Code division multiplexing (CDM) er en multiplex teknik der bruger “spread spectrum communication” . Spread spectrum communication fungerer på den måde at et NarrowBand (NB) signal spredes ud over et større frekvensbånd og på tvær af flere kanaler ved at opdele signalet. Det begrænser ikke båndbreddens digitale signal eller frekvenser. Ved at opdele signalet på den måde, bliver det mindre modtagelig over for interferens og giver dermed bedre og sikrere datakommunikation .
Code Division Multiple Access
Når CDM bliver brugt til at tillade at flere signaler fra flere brugere for at kunne dele en fælles kommunikationskanal, kaldes det for Code Division Multiple Access (CDMA). Hver gruppe af brugere får udstedt en fælles kode og individuelle samtaler bliver kodet i en digital sekvens. Data er tilgængelig på den delte kanal, men kun de brugere der kender en bestemt kode kan tilgå data.
Idéen
Hver kommunikationsstation bliver tildelt en unik kode. Kodestationerne har følgende attributter:
Hvis koden fra én station bliver ganget med koden fra en anden station bliver udbyttet 0.
Hvis koden fra en station bliver ganget med sig selv, bliver udbyttet et positivt tal der er lig med antallet af stationer.
Man kan forklare det teknisk som følgende eksempel:
Forstil dig at der findes fire stationer: W, X, Y og Z. Disse har fået udstedt koderne kw , kx, ky and kz og skal sende data dw , dx, dy og dz. Hver station ganger sin kode med dets data og summen af alle vilkår bliver afsendt i kommunikationskanalen.
Tager vi stationerne og data i eksemplet her, bliver data i kommunikationskanalen:
dw . kw+ dx . kx+ dy . ky+ dz . kz
Hvis vi antager at ved modtagerenden, Station Z gerne vil modtage data sendt fra Station Y. Så skal Station Z, for afkode signalet og modtage data, gange det modtagne datamed koden fra Station Y dy.
data = (dw . kw+ dx . kx+ dy . ky+ dz . kz ) . ky
= dw . kw . ky + dx . kx . ky+ dy . ky . ky+ dz . kz .
ky =0 + 0 + dy . 4 + 0 = 4dy
Ved hjælp af ovenstående udregning kan man se at Station Z kun har fået data fra én Station, nemlig Y, mens den har set bort fra de andre koder.
Ortogonale sekvenser
Koderne der er udsted til stationerne er omhyggeligt genererede koder der kaldes chip-sekvenser eller i mere daglig tale kaldes de ortogonale sekvenser. Sekvenserne består af +1 eller -1. De har visse egenskaber for at kunne tillade kommunikation.
Ortogonale egenskaber:
Én sekvens har m elementer, hvor m er antallet af stationer.
Hvis en sekvens ganges med et tal, bliver alle elementer ganget med dét tal.
For at gange to sekvenser, ganges de tilsvarende positionelle elementer og summeres for at få resultatet.
Hvis en sekvens bliver ganget med sig selv er resultatet m(som i antallet af stationer).
Hvis en sekvens ganges med en anden sekvens er resultatet 0.
For at tilføje to sekvenser, skal man tilføje tilsvarende positionelle elementer.
Lad os prøve at fastslå ovenstående egenskaber gennem et eksempel. (Det her bliver lidt langhåret, men jeg håber I kan se idéen)
Lad os antage følgende ortogonale sekvens for, de fire stationer fra før, W,X,Y og Z:
Hvis [+1 -1 -1 +1bliver ganget med 6 får vi [+6 -6 -6 +6]. = 6
Hvis [+1 -1 -1 +1] bliver ganget med sig selv, altså: [+1 -1 -1 +1]. [+1 -1 -1 +1], får vi+1+1+1+1 = 4, som er lig med antallet af stationer.
Hvis [+1 -1 -1 +1] bliver ganget med [+1 +1 -1 -1], får vi +1-1+1-1 = 0
Hvis [+1 -1 -1 +1] bliver tilføjet til [+1 +1 -1 -1], får vi [+2 0 -2 0].
Som I kan se i eksemplet bevises påstandene om de Orthogonale egenskaber, som er grundprincipperne i teknologien CDMA for hvordan kommunikation kan deles over flere kanaler ved at sprede signalet over flere frekvensbånd og samtidig sikre at det kun er rette modtager der får afsenders data.
LTE (Long-Term Evolution) er en fjerde-generations (4G) trådløs standard der øger netværkskapacitet og hastighed for mobiltelefoner og andre enheder der anvender trådløs mobiltelefoni, når man sammenligner med 3G teknologi. Alt er blevet markant forbedret med 4G. Der er højere generelle og spidshastigheder ligesom der er kommet fleksibilitet i båndbredde og frekvenser.
LTE giver mulighed for op til 100 mbit/s download og 30 mbit/s uploadhastigheder. Der er lavere svartider, skalérbar båndbreddekapacitet og bagudkompatibelt med eksisterende GSM og UTMS teknologier. Videreudviklingen af LTE, kaldet LTE-Advanced (LTE-A) har ydermere spidshastigheder på op til 1000 mbit/s.
Selvom LTE normalt kaldes 4G LTE, er LTE teknisk set langsommere end 4G, men stadig hurtigere end normale 3G hastigheder. Derfor kaldes LTE også for 3,95G. 4G er stort set tilgængeligt overalt og er stadig den mest brugte teknologi, hvor der ikke er 5G tilgængeligt. Der findes også tale på LTE, kaldet Voice over LTE eller bare VoLTE i daglig tale. Der findes endnu ikke Tale på 5G og derfor hopper telefoner fra 5G ti 4G netværk når der kommer et taleopkald på telefonen.
LTE har også en direkte rolle i udviklingen af nuværende 5G standard 5G New Radio (5GNR). De tidlige 5G netværk kaldes 5G Non Stand Alone (5G NSA), disse kræver et 4G LTE lag for at kunne styre 5G datasessioner. 5G NSA netværk kan igangsættes og supporteres af eksisterende 4G framework som gør at de er billigere at indkøbe, drive og administrere for teleoperatører der udruller 5G.
Hvordan fungerer LTE?
Et LTE netværk benytter multibruger versionen af orthogonal frequency-division multiplexing (OFDM) modulationskema, kaldet orthogonal frequency-division multiple access (OFDMA), til downloadsignalet.
OFDMA muliggør at LTE downloadsignalet kan transmittere data fra én basestation til flere brugere ved højere datahastigheder end på 3G, med forbedret båndbredde effektivitet. Enkeltbærer FDMA bliver brugt til upload signalet, som reducerer det strømforbrug der kræves for at transmittere mobilsignalet.
De øvre lag af LTE er baseret på TCP/IP protokollen, som er den samme der bruges i et almindeligt IP-netværk som i de fleste kablede netværk. LTE understøtter datatransmissioner som blandede data, lyd, video og beskedtrafik.
LTE-A benytter multiple input, multiple output (MIMO) antenneteknologi der minder ret meget om det der bruges i IEEE 802.11n WiFi standarden, et trådsløst local area network. MIMO og OFDM gør det muligt at forbedre signalet i forhold til støj ved modtageren, hvilket giver forbedret trådløs netværksdækning og båndbredde, særligt i bytætte områder.
4G LTEs funktioner
LTE giver brugerne følgende funktioner blandt mange:
Lyd og video streaming. LTE har hurtigere download og upload hastigheder end 2G og 3G.
Real-time forbindelse til services. Med Voice over LTE, kan brugerne tale med andre uden at opleve forsinkelser, lag eller jitter.
Endnu hurtigere hastigheder med LTE-Advanced. Download og upload ved LTE-Advanced er to til tre gange hurtigere end standard LTE.
Carrier aggregation. Denne LTE-Advanced funktion forbedrer netværkskapaciteten ved at tilføje frekvensbåndbredde op til 100 Mhz på tværs af fem frekvensspektrum på 20 Mhz båndbredde hver. LTE-A mobiler kombinerer frekvenserne fra flere spektrum for at forbedre signal, hastighed og pålidelighed.
LTE Internet of Things (IoT)
I Juni 2016, udgav 3GPP Release 13 IoT cellular connectivity options som beskriver IoT machine-to-machine (M2M) brug. LTE-maskine-type kommunikation (LTE-M) og NarrowBand IoT (NB-IoT) blev begge baseret på LTE standard, men med markante ændringer for at tillade WAN løsninger med lavt strømforbrug.
LTE-M giver datahastigheder på omkring 1 Mbit/s, mens NB-IoT supporterer op til 26 Kb/s i downloadhastighed. Disse reducerede hastigheder har øget batterilevetiden på M2M enheder der bruger IoT mobilstandarder. Sensors og andre enheder der kræver mobilitet på mobilnetværk vil man kunne bruge NB-IoT der kan understøtte batterilevetider på op til 10 år. LTE-M kan supportere op til 10 års batterilevetid på to AA batterier, ved enheder der er statistike og som kun afsender datapakker i et par sekunder om dagen. Hvis en enhed bevæger sig på LTE netværket og bruger LTE-M voicefunktonalitet vil batteritiden reduceres betragteligt.
Hvad er et privat LTE netværk?
Private LTE netværk er nedskalerede udgaver af offentlige LTE netværk. De er designet til at tilbyde mobildækning af private firmaer, campus’er, pakkedistributionscentre, lufthavne og lignende.
Private netværk bruger ulicenserede eller delte spektrum for at give dækning til mobiltelefoner eller andre enheder. Dette inkluderer det globale ulicenserede 5Ghz og 3,5 Ghz frekvensbånd.
For at etablere en privat LTE service skal en virksomhed benytte en LTE mikrocelle, small-cell eller core-netværk servere med enheder der understøtter dette med simkort. Flere af de store mobilproducenter supporterer LTE frekvensbånd der kan benyttes til private services.
LTE historie og udvikling
Større milepæle i LTE’s udvikling:
2004. NTT DoCoMo, en Japansk mobiloperatør, foreslog at gøre LTE den næste internationale standard for trådløs bredbånd og dermed startede arbejdet på LTE standarden.
2006. På en Livedemonstration, viste Nokia Networks at de kunne downloade en HD video samtidigt med at de uploadede et spil via LTE.
2007. Ericsson, demonstrerede LTE med en hastighed på 144 Mbit/s.
2008. Ericsson demonstrerede det første LTE telefonopkald hvor LTE blev brugt i begge ender.
2009. Telia, gjorde LTE tilgængelig i Oslo og Stokholm.
2011. LTE-Advanced blev færdigbeskrevet i 3GPP Release 10.
2016. 3GPP Ingenører begyndte at udvikle 5G standarden som arvtager for LTE.
2017. Den første 5G NSA specifikation blev udgivet og blev bredt tilgængeligt i 2018-2019.
2021. Arbejdet på 5G specifikationerne er stadig i gang.
6G (Sjette generation trådløs teknologi) er efterfølgeren til 5G som udrulles massivt i verden pt. 6G netværk er planlagt til at bruge højere frekvenser end 5G netværk og vil dermed give langt højere kapacitet og endnu lavere svartid end vi er vant til i dag. Vi taler helt ned til mikrosekund (1/1.000.000) svartider hvor vi i dag har millisekund (1/1.000) svartider. Der med bliver svartiderne op til 1000 gange hurtigere. Kigger vi på kapaciteten er der teoretisk tale om op til 1 terabyte pr. sekund. 5G har en teoretisk maksoverførsel på 20gbit pr. sekund. Dermed bliver kapaciteten 50-doblet. NB: Det er teknologi der er i gang med at blive designet. Vi er formentlig et lille årti fra at se et egentligt udrullet netværk.
Med højere kapaciteter og langt hurtigere svartider forventes det at 6G vil skabe forbedringer inden for tilgængelighedsteknologier lokationstjenester og billede- og videobehandling. I tæt forening med kunstig intelligens (AI) vil 6G kunne identificere hvor, det bedste sted, bearbejdning af beregningerne skal foregå uagtet om det er hvor ting skal lagres, processeres eller deles.
Hvilke fordele har 6G i forhold til 5G?
Med den højere kapacitet og langt lavere svartid vil alt der kører 5G få udvidet sin ydeevne betragteligt. Det vil udvide bredden af muligheder og understøtte nye og innovative applikationer inden for kognitive og sanselige teknologier, samt forbundne enheder og billede og videobehandling. 6G vil for access punkter, gøre det muligt at betjene endnu flere enheder på samme tid ved hjælp af OFDMA (Orthogonal Frequency-Division Multiple Access). Vi kender allerede OFDMA fra WiFi6
6G’s højere frekvenser muliggør langt hurtigere processering af sampling rater end ved 5G. De vil også give betragteligt bedre gennemløb og højere datarater. Ydere mere vil brugen af sub-mm bølger (bølgelængder mindre end en millimeter) og frekvens-selektivitet kunne bruges til at beregne den relative elektromagnetiske asbsorptionsrate, hvilket forventes at kunne udvikle trådløs sensorteknologier til bedre at kunne beregne objekter og meget andet i den trådløse dækning. Denne teknologi er muligt fordi at atomer og molekyler udsender og absorberer elektromagnetisk stråling på specifikke frekvenser med tydelige karakteristika og frekvenserne er ens for ethvert materiale hvori de udsender til og absorberer fra.
I 5G er det meningen at der skal tilføjes Edge Computing til at flytte udregningerne tættere på klienterne. Mobil Edge Computing vil blive standard i alle 6G netværk fra starten. Det vil blive en integreret del af den kombinerede kommunikation og computations-infratruktur. Dermed rykker lynhurtige udregninger så tæt på enhederne at der ikke er brug for nær som meget computerkraft i de enkelte enheder. ChatGPT og andre AI teknologier, billede- og videobehandling, Augmented Reality og meget mere vil være lige ved hånden.
Hvad vil 6G kunne bruges til?
6G vil have et stort potentiale for regeringer og industrier i forhold til almen sikkerhed for befolkningen og sikring af værdigenstande. Se følgende anvendelsesmuligheder:
Trusselsopdagelse
helbredsovervågning
Genstands og ansigtsgenkendelse
Beslutningstagning inden for politisystemer og betalingssystemer med flere.
Omgivelsesmålinger som: luftkvalitet, gas og giftmåling
sansende målingsinterfaces der giver brugere virkelighedsnære oplevelser eller giver maskiner mulighed for at fornemme omgivelser bedre.
Forbedringer indenfor disse områder vil også gavne Smartphones og andre mobile teknologier som selvkørende biler, VR, AR, smart cities, neural bands og mange flere kommende teknologier.
Har vi brug for 6G?
Der er en række årsager til at vi har brug for 6G teknologier:
Teknologi konvergens. Den 6. generation af mobile netværk vil integrere tidligere teknoliger der ikke er ensartede, som f.eks. Deep Learning og Big Data Analyser. Introduktionen af 5G har skabt vejen for en stor del af denne konvergens, allerede.
Edge computing. Behovet for indsætte Edge Computing for at sikre generel Throughput(Gennemløbshastigheder), samt at sikre ultralave svartuder og stabile forbindelser til kommunikationsløsninger er en vigtig faktor for 6G
Internet of things (IoT). Eftersom der kommer flere og flere smarte enheder vil 6G også skulle hjælpe med til at sikre M2M (maskine til maskine) kommunikation i IoT.
High-performance computing (HPC). Hvor Edge Computing vil håndtere dele af IoT og data i mobile teknologier, så vil det blive nødvendige med stærke processorkræfter til at håndtere de store datamængder, hertil vil HPC’er blive vigtige.
Hvem vinder 6G ræset?
Der er mange af de større teknologiproducenter der har fokus på 6G og Ericsson, Nokia og Samsung har allerede meldt ud at de har 6G under udvikling. Der var allerede et kapløb i gang om at komme først med 5G, men ifht. 6G, vil 5G-ræset synes mindre. Potentialet for applikationer og services under 6G vil formentlig blive en eksplosion.
Følgende større projekter er allerede undervejs:
The University of Oulu i Finland har lanceret 6Genesis forskningsprojekt der skal udvikle en 6 vision for 2030. Universitetet har også underskrevet en samarbejdsaftale med Japans Beyond 5G Promotion konsortium for at koordinere arbejdet på det Finske 6G Flagskibs forskning på 6G teknologier.
Syd Koreas Electronics and Telecommunications Research Institute er ved at undersøge terahertz frekvensbåndet for 6G. De forudser båndbreddehastigheder 100 gange hurtigere end 4G Long-Term Evolution (LTE) netværk og fem gange hurtigere end 5G netværk.
The U.S. Federal Communications Commission (FCC) åbnede i 2020 for 6G frekvensbåndet for at teste frekvenser på over 95 gigahertz (GHz) til 3 Terahertz.
Hexa-X, et Europæisk konsortium af akademiske og industrielle ledere, arbejder på at udvikle 6G standarder. Finske Nokia styrer projektet som også inkluderer Ericsson og TIM in Italien.
Osaka University i Japan og Australias Adelaide Universitets forskere har udviklet en mikrochip der ved hjælp af multiplex deler data og muliggør en langt mere effektiv styring af terahertz bølger. Under test sendte enheden 11 Gigabit/s, som er sammenligneligt med 5Gs teoretiske grænse, på 10 Gb/s.
6G Netværks fremtidsaspekter
Datacentre er allerede i gang med større 5G drevne ændringer. Herunder virtualisering, programmérbare netværk, Edge Computing og udfordringer med at håndtere private og offentlige netværk på samme tid. Der er virksomheder som har behov for have deres eget RAN (Radio Access Network) på deres lokationer med hybrid on-premise og hosted computing og alle mulige andre konstellationer der dukker op.
6G radionetværk vil gøre kommunikation og dataindsamling nødvendig for at opsamle informationer. Det vil kræve en systematisk tilgang for 6G Teknologimarkedet der bruger dataanalyser, AI og næste generation af processormuligheder ved brug af HPC og kvantemekanisk computing.
Derudover er der dybtgående ændringer i RAN teknologien. 6G vil ændre måden kommunikationsnetværks kernerne arbejder på, efterhånden som nye teknologier sammenlægges. Specielt AI (kunstig intelligens) vil tage hovedsædet under 6G.
Hertil vil der komme ændringer i 6G på følgende områder:
Nano-core. En såkaldt nano-core forventes at opstå som en almindelig computing-kerne der omfatter elementer fra kunstig intelligens og HPC. Nano-coren behøver ikke være på at fysisk netværk, men kan omfatte en logisk sammenslutning af computing ressourcer der deles af mange netværk og systemer.
Edge og core koordination. 6G netværk vil skabe betragtelige større mængder data end 5G netværk og vil udvikle sig til at indeholde koordinering mellem Edge og Core platforme. Derved vil datacentre også få behov for at udvikle sig.
Data management. 6G potentiale inden for sansning, billedbehandling og lokationsplacering vil generere enorme mængder data der skal styres på vegne af netværksejerne, serviceudbyderne og dataejerne.
Hvornår kan vi så forvente at få 6G internet?
6G internet forventes at blive lanceret, kommercielt i år 2030. Teknologien udnytter i større grad distribueret Radio Access Network (RAN) og Terahertz (THz) spektrum for at øge kapaciteten, mindske svartider og forbedre båndbredde deling.
6GE
“E” står for extension (udvidelse) og er et midlertidigt trin imellem 6G og 7G som skal bruge en nylig licenseret 6Ghz kanal der vil udvide de tilgængelige 6G frekvenser der sender 6G signaler. FCC har i 2020, som de første, godkendt 6Ghz spektrummet for at øge innovationen af 6GE Wi-Fi enheder.
7G? Er vi ikke lige i gang med 6G…
Selvom 6G netværk ikke forventes udrullede og operationelle før 2030’erne, er forskningen i 7G trådløse teknologier allerede påbegyndt. IEEE, er ved at udvikle standarden 802.11be’s specifikationer for 7G og samtidig også ved at beskrive en industri certificering i samarbejde med Wi-Fi Alliance.
IEEEs ændrede standard forventes at blive udgivet i maj 2024. Det vil give enhedsproducenterne designspecifikationer der kan styreperformance og interoperabillitet.
6G netværk forsøger at blive en forlængelse af hurtige Gigabit Ethernet forbindelser for både kommercielle og forbruger enheder. 6G forventes at levere betragteligt højere hastigheder og sikre dataforbindelser. Det forudses at 6G vil muliggøre følgende:
Teoretiske datahastigheder på 11Gb/s samtidigt på tværs af flere gigahertz kanaler
Sprede op til tre forskellige 160Mhz båndbredde kanaler
multiplexe op til 8 forskellige rumlige datastrømme.
7G teknologier vil give et kvantespring i båndbredde vil aflaste de gigantiske arbejdsmængder. Eksempelvis har 7G potentiale til at starte sammenhængende global forbindelse ved hjælp af integration til satelitnetværk der giver adgang til billeder af jorden, telekommunikation og navigation. Virksomheder vil kunne implementere 7G for at automatisere fabrikeringsprocesser og understøtte applikationer der kræver høj tilgængelighed, forudseelig svartid og garanteret QoS (Quality of Service)
Sammenlignet med 6G, er 7G designet til følgende:
leverer dataforbindelser på op til 46 Gb/s – Fire gange så højt som de teoretiske 6G muligheder.
Fordoble kanalstørrelserne til 320 Mhz.
Skille rumlige strømme i op til 16 sammenlignet med de nuværende 8 i 6G.
De fleste der læser artikler på internettet støder, i højere eller lavere grad, på artikler og indlæg der omhandler “farlig” 5G stråling. Disse artikler kommer typisk fra velmenende personer som har på hjertet på rette sted og gerne vil passe på os andre og dermed også dem selv. Desværre er disse velmenende mennesker, sjældent i stand til at bevise deres bekymring med andet end henvisninger til andre påståede og udokumenterede kilder. Når det så en sjælden gang lykkedes én at henvise til videnskabelige artikler, så viser det sig altid at artiklerne enten er falske eller udført på en måde der fremviser data så de fremstår som reelle, men med dybe fejl under overfladen. Fejlene ses oftest i metode, protokol eller reproducerbarhed. Lignende tendenser opstod også da 3G og da 4G skulle udrulles, ligesom der findes lignende postulater om vacciner, årsagen til COVID-19, Jordens form, rumrejser, mm.
Oplysning
Jeg vil i dette indlæg samle fakta fra anerkendte kilder og forsøge at præsentere eller oplyse om de vigtigste pointer i forskningen på en let forståelig måde. I det materiale, jeg har tygget mig igennem, er det endnu ikke lykkedes at finde beviser for at trådløs kommunikation på de nuværende og snarligt kommende frekvenser gør skade på levende væsener. Derfor vurderer jeg at det ikke er skadeligt, at benytte, så længe man bruger teknologierne som producenterne foreskriver og myndighederne anbefaler.
Jeg har i mit indlæg Trådløst hvad er det? brugt følgende illustration til at vise på hvilke frekvenser, de forskellige teknologier, fungerer.
Imidlertid viser illustrationen ikke effekten (mængden af energi/watt) der afsendes. Det er en meget vigtig faktor når man snakker om sundhed og sikkerhed i forhold til radiobølgestråling. Bemærk desuden at ordet stråling ikke betyder farligt. Det afhænger af strålingens karakter. Man kan sige at der er tre meget vigtige faktorer for om en radiobølge er skadelig:
På hvilken frekvens bliver den mængde energi afsendt?
Hvor meget energi bliver der afsendt på en given frekvens?
Er radiobølgerne ioniserede eller ikke-ioniserede?
1. Når vi i Danmark snakker trådløse frekvensbånd, så bruges frekvenserne mellem 100Mhz og 5000Mhz eller rettere 5Ghz. 5G-Nettet kommer til at kunne arbejde på frekvenser mellem 100Mhz og 100Ghz. Så kunne det jo være nærliggende at tænke: “100Ghz – Det er jo 20 gange mere energi end 5Ghz. Det lyder farligt?” Til det må vi forstå at der ikke nødvendigvis tilføjes mere energi til den trådløse radio på grund af at frekvensen stiger. Faktisk er planen for de høje frekvenser at der skal flere master der står tættere på hinanden med en lavere effekt. Altså mindre energi der sendes ud på de højere frekvenser.
Jeg prøver at forklare mulighederne for bredbåndsdækning, ved hjælp af en tænkt analogi over til veje og køretøjer, for at give en måde man kan forholde sig til videnskaben bag. Bær over med mig hvis den ikke helt giver mening eller holder vand. Jeg håber I vil forstå. I velkomne til at foreslå alternativer eller rettelser.
Man kan sige at frekvenserne er de veje eller kanaler, som kommunikationen kan “køre” på og køretøjerne er data der skal sendes ad disse veje eller kanaler.
De lave frekvenser, 100Mhz til 900Mhz, er meget smalle veje og derfor kan de store hurtige lastbiler ikke køre der med al deres last. Til gengæld kan et sendebud, på ben eller cykel, sagtens komme hurtigt frem, selv ad smalle stier op gennem bakker og bjerge. På samme måde kan data lettere penetrere eller bevæge sig igennem hårde materialer og stadig nå frem, da de er mindre “bredde”. Her kan der ikke være meget data med, men den kan komme ind ad langt flere sprækker.
De lidt højere frekvenser mellem 1Ghz og 5Ghz er større landeveje op til motortrafikveje. Her kan motorcykler med små pakker, biler med mellem pakker og små lastbiler kommer frem i ordentlig fart og med større mængder data. De kan til gengæld ikke nå helt op i bakkerne, selvom de godt kan penetrere mindre forhindringer undervejs.
De høje frekvenser som der tiltænkes 5G, altså mellem 5Ghz og 100Ghz, er kæmpestore, flersporede motorveje hvor de helt store lastbiler kan køre. De kan køre nærmest uden hastighedsbegrænsning. Her kan der sendes enorme mængder data på meget lidt tid. Den eneste regel her er, modtager skal kunne se afsender. Der masser af sende og modtagerstationer undervejs. Her kan data ikke bevæge sig igennem materialer uden at signalet ødelægges, men i frit syn er der høje hastigheder i vente. Som illustrationen herunder viser – Jo højere frekvens jo flere svingninger er der. Hver svingning giver plads til en potentiel dataoverførsel.
Ovenstående analogi, er et udkast og der arbejdes på bedre. Kom gerne med forslag til forbedringer eller alternativer.
2. Den mængde energi der afsendes på et givet frekvensspektrum afhænger af hvad formålet er. I en 800watt mikrobølgeovn, som fungerer som et lukket Faradays bur med trådløs energi inden i, afsendes der der 800 watt, når den er på fuldstyrke, i det tidsrum som man angiver. Det er selvsagt farligt for vævet inde i mikrobølgeovnen. Uanset om det er kartoffelvæv eller andebryst. Det er derimod ganske harmløst hvis mikrobølgeovnen, som en mobilmast-celle, kun skulle sende mellem 10 og 50 watt, fra en afstand på 15-3000 meter gennem luften. Kartoflen eller andebrystet ville aldrig se en målbar stigning i temperatur på baggrund af energien der afsendes. Cellevævet ville være intakt. Altså det kan ikke skade kroppens celler.
3. Forskellen på ikke-ioniserende og ioniserende stråling er at ikke ioniserende stråling ikke har energi og/eller frekvens til at ødelægge genetisk materiale ved direkte påvirkning. Altså den ikke ioniserede stråling eller de lavfrekvente radiobølger kan ikke skade levende væsener. Den ioniserede stråling eksempelvis røntgenstråling, UV-stråling eller gammastråling derimod kan skade celler i levende væsener og er der for farligt i større mængder. Uanset om man taler om de ikke-ioniserede eller de ioniserede stråler gælder det at der findes grænseværdier, fastsat af myndighederne. De er sat for at sikre at man ikke uforvarende kommer til at skade andre eller sig selv med stråling.
Det har siden 1951 været muligt at montere en telefon i bilen. Dengang blev samtalerne manuelt ekspederet fra Rigstelefonen, det var dog nødvendigt at vide hvor i landet ens bil og modpartens bil befandt sig. Derudover var der den ulempe at samtaler kunne aflyttes af andre med biltelefon.
Der blev derfor indgået et samarbejde, i slutning af 70’erne, på tværs af de nordiske lande; Danmark, Sverige, Norge og Finland om at udvikle et automatisk mobiltelefonsystem. Det blev kaldt Nordisk Mobil Telefonsystem eller NMT. Det blev idriftsat imellem 1981 og 1982. På det tidspunkt dækkede det de fire lande. Idéen var at brugsfunktionalitet skulle minde så meget som muligt om det almindelig telefonnet.
Centralen, der styrede systemet, hed AXE. Det kunne registrere, hvor mobiltelefonen befandt sig uden at den der ringede op, behøvede at vide hvor den anden person var. NMT-Nettet blev udsendt på 450Mhz frekvensbåndet og i 1986 var det fyldt op og derfor blev 900Mhz frekvensbåndet taget i brug.
NMT-nettet fik flere funktionaliter, som omstilling af opkald til et andet nummer ved ubesvaret og mulighed for at kode, ofte benyttede, numre ind i telefonen. Senere kom Grønland, Island, Holland, Polen, Tyrkiet og Slovenien også til. I 1985 var NMT-Nettet verdens største med 110.000 abonnementer. Generelt set har NMT været med til at bane vejen for GSM netværket vi kender i dag.
GSM– 1. Generation
I København, år1987, blev der underskrevet en kontrakt på en samarbejdsaftale om udvikling og udrulning af Global System for Mobile Communication eller GSM-Standarden. Der var tretten lande der underskrev kontrakten. Det blev efterfølgende besluttet oprettet kvalitetsstandarder og at allokere bestemte frekvensbånd til GSM-nettet. De besluttede at benytte 900Mhz- og 1800Mhz frekvensbåndene til det. I 1991 blev det første opkald på GSM-nettet foretaget og i dag er GSM stadigvæk standarden ,for mobiltelefoni, i langt de fleste lande i verden. Det var også i GSM Standarden at man valgte at bruge SIM-kort (Subscriber Identity Modulecard) til at give adgang for telefonnummeret på mobilen. GSM-Nettet var også et analogt net. Dette var 1. Generation af GSM nettet Altså 1G.
2G-Anden generation
Anden generation af GSM-nettet (2G) var først og fremmest et digitalt netværk. Det digitale netværk kom også til at indeholde en ny standard General Package Radio Service (GPRS) som kunne overføre data trådløst med op til 40kbit/s (kilobit per sekund). Denne udgave blev også kald for 2.5G. Senere, under 2G, blev der videreudviklet en ny udgave af GPRS som blev kaldt EDGE (Enhanced Data Rates for GSM Evolution. EDGE kunne overføre data med op til 384kbit/s. EDGE kaldes også 2.75G
Dernæst indeholdt 2G, SMS (Short Message System). Det blev oprindeligt udviklet til forretningsfolk, som et værktøj til at sende og modtage korte beskeder til og fra forbindelser. Ligesom “Pageren”, i blandt andet USA, havde revolutioneret forretningsgange. Det skulle vise sig, sidenhen, at det var den yngre generation der tog SMS til sig. Det skete i sådan en grad at de udviklede deres eget sprog på platformen. Til at starte med var teksten begrænset til 128 karakterer og prisen pr. SMS kunne være op til 5 kr. Derfor lavede de forkortelser for alt der kunne forkortes og udviklede ansigtsmimiker repræsenteret som smileys i form af kolon, bindestreg, parenters sammensat så de lignede simple versioner af nutidens emojier.
En sidste stor ting der blev blev udviklet i 2. generation af GSM var bruges af TDMA. TDMA står for Time Division Multiple Access, som er en teknologi der tillader flere brugere at bruge samme del af et frekvensbånd på én gang. Dette gøres ved at dele dele frekvenserne op i subfrekvenser. TDMA er kompleks og kræver en meget præcis synkronisering af tids mellem modtager og afsender. Herunder ses et eksempel på TDMA, hvor et frekvensbånd deles af A, B og C. Hver bruger for tildelt et tidsrum til at sende og modtage data. I eksemplet ses det at bruger B sender efter bruger A og derefter bruger C.
De første teknologier på internettet var på 2G, Det var alt fra små hjemmesider på Web Application Protocol (WAP) til specielt udviklede applikation der kunne sende og modtage specifikke data over GSM netværket.
3G – Tredje generation
Den tredje generation af GSM teknologien er en opgradering der primært øger båndbredden. Den teoretiske 3.5hastighed er 144kbs/s og senere i 3.5G og 3.75G. 3.5G er en forbedret udgave af 3G som benytter en teknologi kaldet High Speed Download Packet Access (HSDPA). Det er baseret på UMTS og giver større kapacitet og hastighed samtidig med at svartiderne reduceres. Hastighederne kan nå op på 14 Mbit/s. Med 3.75G eller Evolved High Speed Packet Access (HSPA+) kan hastighed op til 168Mbit/s opnås med MIMO antenne teknik. Med 3G teknologien åbnede muligheder for hjemmesider på mobile enheder, videomøder, overførsel af større datamængder. Mobile bredbåndsforbindelser som erstatning for faste bredbåndsforbindelser eller som løsninger, steder hvor der ikke var/er fast bredbånd tilfældigt.
4G Long Term Evolution
4. Generation af GSM også kaldet LTE er blandet andet defineret som en standard der skal kunne levere 100mbit/s (Megabit) til enheder der er i høj bevægelse. Altså køretøjer som biler og tog, samt levere 1Gbit/S (Gigabit) for stationære eller enheder i lav bevægelser som fodgængere. Selvom standarden for teknologien foreskriver disse høje hastigheder, så er det sjældent at man praktisk kan opnå disse. Se eventuelt indlægget om Transporttab. 4G er designet til at håndtere alt hvad 2G og 3G har kunnet, samt medfødt IP-Telefoni, Gaming servicer, mobilt TV i HD, videokonferencer i stor skala med tusindvis af brugere, 3D TV, Sociale Medier, samt understøttelse af IOT-Enheder (Internet of Things).
Voice over LTE
VoLTE er en trådsløs kommunikations standard der fungerer på mobiltelefoner, IOT-enheder og alverdens data-terminaler. Voice over LTE har tre gange så meget voice og data kapacitet som 3G over UTMS. For at kunne lave et Voice og LTE opkald i HD Voice, skal endepunkterne, masterne og centralerne alle understøtte VoLTE. I 2019 understøttede 262 operatører i over 120 lande VoLTE.
5G – Femte generation
Bagved 5G-Teknologien ligger der en masse funktionaliteter som:
Network slicing som er en netværksarkitektur der gør det muligt at multiplexe (det at kombinere flere signaler til ét signal på et delt medie), virtualiserede og uafhængige logiske netværk på den samme underlæggende fysiske netværks infrastruktur.
Orthogonal Frequency-Divsioning Multiplexing (OFDM) er en teknologi som fremmedordene indikerer der involverer at parallelle signaler kan blive opdelt og samlet igen på tværs af frekvenser. Den bruges for at undgå problemer med Doppler-effekten (ændringer i signalbølgen) og Multipath-propagation (Det at et signal kan nå en antenne af flere veje og dermede skabe interferens undervejs. Ved brug af OFDM mindsker man begge dele.
MIMO eller Multiple Input Multiple Output, som også bruges i 4G er en teknologi der gør det muligt at bruge flere antenner til at modtage og sende samtidigt og dermed udnytte en større del af frekvensbåndet og dermed den tilgængelig båndbredde og hastighed på én gang.
Kort og godt. 5G:
Bliver hurtigere (op til 10Gbit/S)
Kan håndtere flere brugere 100x flere end på 4G)
Har lavere svartider (med mulighed for svartid på under 1 sekund)
er mere stabilt
er designet til at samle netværk
Forventes at blive benyttet af 1.7 milliarder enheder.
6G – Next Gen
Den 6. Generation af GSM-nettet, som bliver efterfølgeren til 5G mobilteknologi kommer til bruge højere frekvenser end 5G nettet, formentligt i Terahertz (Thz) spektrummet. Derved bliver der væsentlig højere netværkskapacitet og meget lavere svartider. Ét af målene, for 6G er at det skal kunne understøtte svartider i mikrosekunder så svartidere bliver 1000 gange bedre eller 1/000 del af dem vi kender i dag fra en svar tid på 1 millisekund. Derudover vil sampling rates (den hastighed eller det antal af lyderbidder man kan “smage” på, på én gang) foregå meget hurtigere. Kombinationen af sub-mm lydbølger (lydbølger på under 1mm) og frekvensvalg baseret på elektromagnetisk absorberingshastighed forventes at kunne udvikle trådløse sensorer betydeligt.
Teknoligien 6G forventes at understøtte dataforbindelser på 1 terabyte pr. sekund (Tb/s). Hastigheden vil være ulige noget vi har set før og den vil forøge 5G mulighederne for produkter der benytter sig af 5G væsentligt lige som det vil være muligt at danne eller opfinde helt nye teknlogier der på trådløse forbindelser vil kunne forbinde, detektetere, indsende , modtage og behandle, højopløselige billeder og video, informationer med flere og datatunge lag indlejret. Det forventes særligt at kunstig intelligens (AI), autonom infrastruktur, video- og billedbehandling, samt tilgængelighedsteknologier og placeringsteknologier vil få markante forbedringer på baggrund af 6G.
Det vil være muligt med kuntig intelligens, med de høje hastigheder, at server infrastruktur 6G-Netværket og endepunkterne snakker så godt sammen at de automatisk og autonomt selv finder det oplagte eller bedste sted at beregne data, både hvor lagring, processering og deling skal foregå. Der tales allerede i dag om at tilføje Mobile Edge Computer (MEC – som er det man kalder ovenstående AI-drevne autonome infrastruktur) som en tilføjelse til 5G, men MEC vil blive en del af alle 6G netværk. Dermed vil Edge og Core computing bliver sømløst integreret i kommunikations og server infrastrukturen allerede før 6G-netværket idriftsættes. Hvilket vil betyde at de allerede tages i brug under 5G, men først opnår der potentiale når 6G er tilgængeligt.