FDM – Frequency-Division Multiplexing

Hvad virker Frequency-Division Multiplexing (FDM)?

I Frequency-Division Multiplexing (FDM), bliver flere signaler kombineret til transmission på en kommunikationskanal, hvor hvert signal bliver tildelt en forskellig frekvens eller underkanal i selve kanalen. For at kunne skabe en tramission, med flere signaler og en enkelt kanal med success, separerer FDM tildelte kanalbånd op i striber af unbrugte frekvenser. Disse kaldes guard bands. Guard bands forebygger at signalerne overlapper hianden over et delt medie.

Et signal bliver genereret og moduleret af afsender-enheden og bliver båret over de opdelte bånd. De modulerede signaler bliver kombineret ved at bruger en multiplexer (MUX) og sendt over kommunikationskanalen. På modtager-enheden bliver de kombinerede signaler bearbejdet i en demultiplexer (DEMUX) for at udvinde de individuelle signaler.

Hvad er MUX og DEMUX i Frequency-Division Multiplexing?

I FDM, skabes et tovejs kommunikationskredsløb, som kræver en MUX/DEMUX ved begge ender. Multiplexing bruges når signaler ved lavere båndbredde bliver sendt gennem en kanal med større båndbreddde..

Man kan forestille sig et langdistance kabel med en båndbredde på 3mHz (Megahertz). Teoretisk vil man kunne sætte og sende 1.000 signaler på hver 3 kHz (Kilohertz) bredde i kanalen. Opdeling af frekvenserne foregår i multiplexeren. DEn accepterer input fra hver enkelt bruger og skaber et signal på en forskellig frekvens for hvert input. Dette bliver en enkelt komplekst højhastighedsbåndbreddesignal der indeholder data fra alle brugere. I den anden ende sidder der så en demultiplexer der separerer signalet tilbage til de individuelle signaler til de respektive brugere.

Eksempler på Frequency-Division Multiplexing

Forestil dig fire frekvensbånd med en kendt båndbredde på 200 kHz der hver især er adskilt af guardbands på 10kHz hver. For at kunne håndtere alle båndende skal kommunikationskanalen have en kapacitet på 830kHz altså (200*4)+(3*10).

FDM multiplexer de fire frekvensbåbd og sender dem alle via kommunikationskanalen Hver besked modulerer en forskellig bærer, så de modulerede signaler er på forskellige frekvensbånd der ikke overlapper hinanden. Multiplexeren kan bruge enhver amplitude modulation (AM) eller frekvensmodulation (FM). Signalet demultiplexes i modtagerens ende gennem en bunke band-pass filtre som demodulerer signalet for at genskabe de originale frekvensbølger.

Hvad er forskellen imellem FDM, TDM og STDM?

Generelt kan det siges, at multiplexing er processen hvor information (bits), fra flere forskellige indkommende kommunikationskanaler, bliver overført ind i bit tider på én udgående kommunikationskanal. Demultiplexing er den modsatte proces.

Der findes 3 hovedtyper af multiplexing:

  1. Tids-Delt Multiplexing (TDM)
  2. Frekvens-Delt Multiplexing (FDM)
  3. Statisk TDM (STDM)

I TDM, er kapacitet af den udgående kanal opdelt i forskellige kanaler, med data fra hver indkommende kanal, placeret i én udgående kanal. Den deler tiden, på den udgående kanal, i bestemte længder og definerer intervaller som kaldes rammer (frames).

Mediets (kabel, trådløs mm.) dataoverførselshastighed er større end kilden. Alle signaler arbejder på samme frekvens, men på forskellige tidspunkter. Dette gør TDM fra FDM hvor forskellige signaler arbejder forskellige frekvenser på samme tid.

TDM’s udgående kanaludnyttelse varierer afhængigt af hvor meget de indkommende datastrømme varierer. Hvis de er meget stabile kan de udnyttes i høj grad og derfor fungerer denne metode bedst ved trafik med en konstant bitrate.

I STDM vil kapaciten, allokeret til hver indkommende kanal, variere over tid og afhænge af den øjeblikkelige datarate. Derfor fungerer det når kapaciteten af den udgående kanal er lige så stor som summen af den gennemsnitslige datarate fra de indkommende kanaler. STDM er derfor bedst at bruge ved applikationer der har mange udbrud af input data.

Indsæt link til Code-Division multiplexing.

Fordele og ulemper for Frequency-Division multiplexing

Når man bruger Frequency Division Multiplexing (FDM) bruges i et kommunikationsnetværk,is bliver hvert inputsignal der sendes og modtages afsendt med maksimal hastighed uagtet tidspunktet. Dette er hovedaktivet i denne teknologi. Men hvis der er mange signaler der er der sendes langs en langdistance linke er højere båndbredde og opsætning påkrævet for at sikre ordentlig ydeevne.

FDM har to ulemper:

  1. Først og fremmest, da de variende kvendsbånd skal adskilles af Guard bands, vil der være spild af båndbredde.
  2. Dernæst, hvis der er væsentlige ikke-linære forhold i transmissionslinket; Der er kan være crosstalk ( forstyrrelse fra omkring liggende signaler) blandt de forskellige signaler, der skaber kommunikationsfejl. Dette er et almindelige problem i FDM, fordi de bruger analoge signaler, som er mere tilbøjelige til abrydelser grundet støj end ved digitale signaler.

Til trods for disse ulemper, bliver FDM anvendt i mange sammenhænge.

Anvendelse af Frequency-Division Multiplexing

En typisk analog internetforbindelse gennem et twiste-pair kabel kræver ca. 3kHz båndbredde for at have en præcis og pålidelig dataoverførsel. Twisted-pair kabler er almindelige i husholdninger og mindre virksomheder.

Telefonlinjer der typisk har været brugt mellem større virksomheder, Stater, regioner og kommuner giver langt større båndbredder. FDM giver enkelt-transmissions medier som kobberkabel eller fiberkabel mulighed for at blive delt af flere individuelle signaler der genereres af flere brugere.

Der har FDM været populært hos teleoperatører.

FDM bruges også og har også været brugt til

  • Radioudsendelser – AM og FM
  • TV udsendelser
  • Trådløse netnærk
  • Satellitkommunikation
  • Mobile netværk

5G – Sundhed

Hvorfor dette indlæg?

De fleste der læser artikler på internettet støder, i højere eller lavere grad, på artikler og indlæg der omhandler “farlig” 5G stråling. Disse artikler kommer typisk fra velmenende personer som har på hjertet på rette sted og gerne vil passe på os andre og dermed også dem selv. Desværre er disse velmenende mennesker, sjældent i stand til at bevise deres bekymring med andet end henvisninger til andre påståede og udokumenterede kilder. Når det så en sjælden gang lykkedes én at henvise til videnskabelige artikler, så viser det sig altid at artiklerne enten er falske eller udført på en måde der fremviser data så de fremstår som reelle, men med dybe fejl under overfladen. Fejlene ses oftest i metode, protokol eller reproducerbarhed. Lignende tendenser opstod også da 3G og da 4G skulle udrulles, ligesom der findes lignende postulater om vacciner, årsagen til COVID-19, Jordens form, rumrejser, mm.

Trådløs stråling er ikke påviseligt skadeligt, selvom billeder som dette kan anlede at tro det
Oplysning

Jeg vil i dette indlæg samle fakta fra anerkendte kilder og forsøge at præsentere eller oplyse om de vigtigste pointer i forskningen på en let forståelig måde. I det materiale, jeg har tygget mig igennem, er det endnu ikke lykkedes at finde beviser for at trådløs kommunikation på de nuværende og snarligt kommende frekvenser gør skade på levende væsener. Derfor vurderer jeg at det ikke er skadeligt, at benytte, så længe man bruger teknologierne som producenterne foreskriver og myndighederne anbefaler.

Jeg har i mit indlæg Trådløst hvad er det? brugt følgende illustration til at vise på hvilke frekvenser, de forskellige teknologier, fungerer.

Imidlertid viser illustrationen ikke effekten (mængden af energi/watt) der afsendes. Det er en meget vigtig faktor når man snakker om sundhed og sikkerhed i forhold til radiobølgestråling. Bemærk desuden at ordet stråling ikke betyder farligt. Det afhænger af strålingens karakter. Man kan sige at der er tre meget vigtige faktorer for om en radiobølge er skadelig:

  1. På hvilken frekvens bliver den mængde energi afsendt?
  2. Hvor meget energi bliver der afsendt på en given frekvens?
  3. Er radiobølgerne ioniserede eller ikke-ioniserede?

1. Når vi i Danmark snakker trådløse frekvensbånd, så bruges frekvenserne mellem 100Mhz og 5000Mhz eller rettere 5Ghz. 5G-Nettet kommer til at kunne arbejde på frekvenser mellem 100Mhz og 100Ghz. Så kunne det jo være nærliggende at tænke: “100Ghz – Det er jo 20 gange mere energi end 5Ghz. Det lyder farligt?” Til det må vi forstå at der ikke nødvendigvis tilføjes mere energi til den trådløse radio på grund af at frekvensen stiger. Faktisk er planen for de høje frekvenser at der skal flere master der står tættere på hinanden med en lavere effekt. Altså mindre energi der sendes ud på de højere frekvenser.

Jeg prøver at forklare mulighederne for bredbåndsdækning, ved hjælp af en tænkt analogi over til veje og køretøjer, for at give en måde man kan forholde sig til videnskaben bag. Bær over med mig hvis den ikke helt giver mening eller holder vand. Jeg håber I vil forstå. I velkomne til at foreslå alternativer eller rettelser.

Man kan sige at frekvenserne er de veje eller kanaler, som kommunikationen kan “køre” på og køretøjerne er data der skal sendes ad disse veje eller kanaler.

  • De lave frekvenser, 100Mhz til 900Mhz, er meget smalle veje og derfor kan de store hurtige lastbiler ikke køre der med al deres last. Til gengæld kan et sendebud, på ben eller cykel, sagtens komme hurtigt frem, selv ad smalle stier op gennem bakker og bjerge. På samme måde kan data lettere penetrere eller bevæge sig igennem hårde materialer og stadig nå frem, da de er mindre “bredde”. Her kan der ikke være meget data med, men den kan komme ind ad langt flere sprækker.
  • De lidt højere frekvenser mellem 1Ghz og 5Ghz er større landeveje op til motortrafikveje. Her kan motorcykler med små pakker, biler med mellem pakker og små lastbiler kommer frem i ordentlig fart og med større mængder data. De kan til gengæld ikke nå helt op i bakkerne, selvom de godt kan penetrere mindre forhindringer undervejs.
  • De høje frekvenser som der tiltænkes 5G, altså mellem 5Ghz og 100Ghz, er kæmpestore, flersporede motorveje hvor de helt store lastbiler kan køre. De kan køre nærmest uden hastighedsbegrænsning. Her kan der sendes enorme mængder data på meget lidt tid. Den eneste regel her er, modtager skal kunne se afsender. Der masser af sende og modtagerstationer undervejs. Her kan data ikke bevæge sig igennem materialer uden at signalet ødelægges, men i frit syn er der høje hastigheder i vente. Som illustrationen herunder viser – Jo højere frekvens jo flere svingninger er der. Hver svingning giver plads til en potentiel dataoverførsel.

Ovenstående analogi, er et udkast og der arbejdes på bedre. Kom gerne med forslag til forbedringer eller alternativer.

2. Den mængde energi der afsendes på et givet frekvensspektrum afhænger af hvad formålet er. I en 800watt mikrobølgeovn, som fungerer som et lukket Faradays bur med trådløs energi inden i, afsendes der der 800 watt, når den er på fuldstyrke, i det tidsrum som man angiver. Det er selvsagt farligt for vævet inde i mikrobølgeovnen. Uanset om det er kartoffelvæv eller andebryst. Det er derimod ganske harmløst hvis mikrobølgeovnen, som en mobilmast-celle, kun skulle sende mellem 10 og 50 watt, fra en afstand på 15-3000 meter gennem luften. Kartoflen eller andebrystet ville aldrig se en målbar stigning i temperatur på baggrund af energien der afsendes. Cellevævet ville være intakt. Altså det kan ikke skade kroppens celler.

Bemærk i min fortænkte illustration, at ænderne i luften er upåvirkede. Faktisk påvirkes fugles indre kompas en anelse af elektromagnetisk energi. Det kan dermed forstyrre deres retningssans. Det essentielle er at det ikke fysisk skader deres væv i kroppen når de udsættes for energien, som typisk ligger mellem 10-50 watt.
Bemærk også at det signal mikrobølgeovnen udsender er direkte livsfarligt. Mikrobølgen ovnen sender 800 watt ud på fuld styrke og kan ved hjælp af stråler i mikrobølgefrekvenserne, gennemtrænge og opvarme/skade cellerne i maden. Heldigvis er energien indkapslet i et Faradays bur og dermed sikkert. Så din mikrobølgeovn er altså stadigvæk et sikkert køkkenredskab så længe du bruger det som producenten foreskriver.

3. Forskellen på ikke-ioniserende og ioniserende stråling er at ikke ioniserende stråling ikke har energi og/eller frekvens til at ødelægge genetisk materiale ved direkte påvirkning. Altså den ikke ioniserede stråling eller de lavfrekvente radiobølger kan ikke skade levende væsener. Den ioniserede stråling eksempelvis røntgenstråling, UV-stråling eller gammastråling derimod kan skade celler i levende væsener og er der for farligt i større mængder. Uanset om man taler om de ikke-ioniserede eller de ioniserede stråler gælder det at der findes grænseværdier, fastsat af myndighederne. De er sat for at sikre at man ikke uforvarende kommer til at skade andre eller sig selv med stråling.

Dette indlæg er under udarbejdelse.

Kilder til indlægget:

http://www.bfs.de/SiteGlobals/Forms/Suche/BfS/EN/SARsuche_Formular.html https://www.teleindu.dk/wp-content/uploads/2020/11/Mobiloperat%C3%B8rers-EMF-vejledning-M%C3%A5ling-af-en-antenneposition-01112020.pdf https://vbn.aau.dk/ws/portalfiles/portal/310743775/StraalingFraMobilmasterJBAGFP2004.pdf https://www.who.int/peh-emf/meetings/archive/en/keynote5dawoud.pdf https://www.sst.dk/da/viden/straaling/straaling-i-hverdagen https://www.sst.dk/da/Viden/Straaling/Fakta https://www.sst.dk/da/Viden/Straaling/Fakta/Ioniserende-straaling https://www.nbi.ku.dk/spoerg_om_fysik/fysik/radar/ https://kefm.dk/tele-og-bredbaand/regler-om-mobilstraaling-og-5g https://ens.dk/ansvarsomraader/frekvenser/fakta-om-5g-og-mobilstraaling https://ens.dk/ansvarsomraader/telepolitik/5g

Trådløst hvad er det ?

Hvad er trådløst?

Trådløs er en måde at transportere signaler uden brug af faste forbindelser som kobberkabler eller fiberoptiske kabler. Signalet udbreder sig i det frie rum. Når folk snakker om trådløs er det som oftest trådløs kommunikation de refererer til. Trådløs kommunikation er når information overføres mellem enheder der ikke er forbindet via fast forbindelse (kabel).

Hvor bruges trådløst?

Før vi går i dybden med hvordan trådløs kommunikation fungerer, bør vi kigge på hvordan trådløs anvendes. I næsten alle scenarier bruges trådløs kommunikation til at sende og modtage data. Det kan enten være envejs-kommunikation som Radio eller gammeldags Flow-TV eller det kan være tovejs-kommunikation, hvor en enhed fungerer som sender og den anden som modtager. Det andet scenarie med tovejs-kommunikation bruges i satelitter, Trådløse routere og Access Points (AP’er) eller i mobilnetværk, eksempelvis 2G/3G/4G eller 5G teknologi, som mellemliggende punkter der sørger for at forbinde kommunikationen mellem sender og modtager.

Hvordan fungerer trådløs kommunikation?

For at trådløs kommunikation kan ske, skal vi have data der skal transporteres uden kabler. Disse data transportes i stedet gennem det der kaldet signaler (som består af elektromagnetiske bølger). Så hvordan skaber man et signal der kan sendes trådløst?

Det starter med transmitteren (senderen) hvor en oscillator skaber en periodisk bølge (signalet). Dette signal udbreder sig gennem interne kabler i enheden op til antennen. Da antennen er en leder, vil den elektriske strøm bevæge sig ud til enden af antennen. Antennen udstråler den skiftende spænding (den periodiske bølge af strøm) som en elektromagnetisk bølge. Her starter det trådløse, altså i det at antennen konverterer den elektriske spænding til bølger i luften.

Where does wireless start

Signalets frekvens.

Afhængigt af hvor hurtigt, signalet fra oscillatoren skifter, har de udgående bølger forskellige frekvenser. Disse frekvenser kan benyttes til forskellige formål. Man deler de forskellige frekvenser op i frekvensdomæner og samler disse i et frekvensspektrum. Anvendelseformål deles også op i frekvensdomæner. Eksempelvis kan der nævnes: Wi-Fi, TV-udsendelse, mobilkommunikation, Satelit, Radioudsendelse, ISM-båndet, GPS og mange flere. Det er regeringen i det enkelte land der er ansvarlige for tildele frekvensbånd til forskellige formål.

Grunden til at man opdeler frekvenser til forskellige formål er for at undgå kollision imellem domænerne. Ved at adskille forskellige teknologier til deres egne frekvensbånd, kan disse ikke “larme”. Når et signal “larmer” på samme frekvens bånd som et andet, kan ingen af de to signaler komme igennem eller også vil det som minimum betyde væsentlige forringelser af signalet.

Hvordan bevæger et signal sig?

Et signal bevæger sig typisk ikke direkte til modtageren efter at være blevet sendt. Antennen på transmitteren udstråler signal i flere retninger. Signalbølgen kan reflektere sig på bygninger, afbøjes på skarpe kanter eller splittes på mindre genstande og stadig nå modtageren. Undervejs vil bølgen lide tab i form af dæmpning og forsinkelse. Modtageren opfanger alle dele som et kombineret signal. Når der er mere end en rute mellem transmitter og modtager, kalder man dette for en “flérstis-kanal” (multipath channel).

Radio channel effects overview

Hvad sker der i transmitteren?

Vi ved at modtageren skal håndtere det forvrængede og blandede signal for at kunne afkode data. Dette er en kompliceret opgave, da signalet indeholder mange uønskede dele. For at gøre det lettere, for modtageren, tilføjes yderligere led i processen ved transmitteren. Før vi sender data afsted, koder vi data ind i pakker. Dette tilføjer yderligere bits til data, som som gør det lettere at genskabe data, under afkodningen, ved modtageren. Efter at dataene er indkodet i pakker, bliver bits placeret på symboler, moduleret til adskillelige signalformer og sendes ud gennem antennen.

Transmitter components