Den elektriske guitar

Historien bag

Omkring år 1936 var der mand der hed Charlie Christian (1916-1942). Han spillede Jazz på guitar. Han havde en ide om at ville spille guitar soloer i sit band og derfor brugte han en akustisk guitar med en pickup. Det siges at dette er den første udgave af den moderne elguitar.

Men behovet for en elektrisk guitar startede faktisk længe før. Allerede i 1880’erne og senere i big bands i 1920’erne, i de store koncertsale, var det blevet tydeligt at der var et behov for at fremhæve guitaren. Den akustiske guitar forsvandt imellem de andre instrumenter og dermed blev det et andenrangs-instrument. Der måtte gøres noget. Det gjorde George Beauchamp. Han designede den første, meget rustikke, eletriske guitar i sit eget hjem. Han spillede Hawaiansk guitar.

Som nævnt før havde jazzmusikere og for den sags skyld også andre, forsøgt sig med at sætte forskellige ting på den akustiske guitar for at forstærke lyden. Resultaterne var desværre ikke gode. Udfordringen lå primært i at den akustiske lyd gav feedback til den mikrofon der opfangede lyd, som så blev forstærket af forstærkeren og det skabte resonans som fik instrumentet til lave en kakofoni (larm) af lyd.

Musik spilles fra elguitaren og sendes til forstærker. Musikken sendes fra forstærkeren ud i rummet og sendes tilbage til elguitaren og rammer strengene som resonerer og dermed skabes der elektrisk feedback som forstærkes indtil der afbrydes eller forstærkeren står af.

En af måderne man arbejdede sig uden om resonansen, den elektriske feedback gav, var at fjerne hulrummet fra guitarkroppen, hvilket gjorde det sværere for lydbølgerne at resonere. Sådan blev guitarer med fastkrop opfundet. De kaldes også for blokguitarer. De blev skåret ud af et helt stykke træ. Derefter blev den hawaiianske “Laps steel guitar” elektrificeret. De blev nangivet sådan, fordi at man sidder med dem i skødet og fordi de er lavet af messing. De spillede væsentligt højere end træ-varianterne.

Beauchamp, som vi hørte om før, mødte Adolph Rickenbacker ved en guitar-fabrik kaldet “The Dopyera Brothers” i Los Angeles. De blev enige om at samarbejde om et elektrisk guitar projekt. Adolph Rickenbacker var en foregangsmand inden for sit felt. En mand der elskede at eksperimentere og turde nye ting. Han startede blandt andet The Rickenbacker International Corporationen virksomhed hvis eneste formål var at opfinde og bygge elektriske musikinstrumenter.

Efter en masse eksperimenter, opfandt Beauchamp og Rickenbacker, endelig en elektromagnetisk enhed, der kunne opfange vibrationerne fra guitarstrengene med stor renhed. Helt basalt forklaret, konverterer elektromagneterne vibrationerne til et elektrisk signal, som derefter forstærkes og så afspilles gennem en højtaler. Den første velfungerende pickup var født.

Feedback var et af de største problemer med de første elektriske guitarer med pickups, monteret, på deres kroppe. Feedback er når lyd, der bliver forstærket af en forstærker, får instrumentet til at resonere. Dette skaber en kakofoni af lyd. Den måde man fjernede den største del af resonansen var som man gjorde med de hawaiianske “Lap steel guitars”, at fjerne hulrummet fra guitarkroppen.

Det første kommercielle elguitar produkt på markedet blev designet af Leo Fender, en af de mest berømte producenter af guitar forstærkere. Den blev udgivet i 1949 og hed Fender Esquire. Det bliver, i dag, betragtet som den første elguitar med fast krop.

Termer og betydning

  • 1 – Kroppen
  • 2 – Strengholder / Stolen
  • 3 – Pickup
  • 4 – Båndmærker
  • 5 – Remholder
  • 6 – Slagbræt
  • 7 – Vibratorarm
  • 8 – Strenge
  • 9 – Bånd
  • 10 – Hovedet
  • 11 – Strengholdere
  • 12 – Stemmeskruer
  • 4-10 – Halsen (Her sidder gribebrættet)
  • 13 Sadlen

En Elguitar består altså (hovedsageligt) af kroppen, halsen og hovedet.

På kroppen sider slagbrættet, strengholder og stolen. På strengholderen er strengene monteret og de går hele vejen fra stolen til strengholderne på hovedet. stolens formål er at holde strengene på den korrekte afstand til gribebrættet. Ved stolen sidder vibratorarmen og lige efter stolen sidder pickuppen.

På halsen hvor strengene går, kaldes for gribebrættet. Gribebrættet er inddelt i zoner, adskilt af metalbånd. Disse zoner kaldes bånd og her opdeles guitarens toner. Prikkerne på båndene er båndmærker, som visuelt hjælper dig, så du kan bevæge din hånd til de noder du ønsker at spille. Mellem halsen og hovedet sidder sadlen, som sørger for at strengene ikke rører selve halsen.

På hovedet sidder strengholderne og stemmerskruerne. Strengholderne er der hvor strengene er spændt fast og stemmerskruerne bruger man når man stemmer guitaren. Der er ligeså mange stemmerskruer som der er strenge. Hvis man drejer på en stemmeskrue, bliver tonen på strengen enten højere eller dybere.

Hvordan fungerer den så?

Hvis vi først kigger på de fysiske love den, elektriske guitar, er underlagt, så er det loven om elektromagnetisme der er gældende, nærmere betegnet elektromagnetisk induktion. Helt enkelt handler elektromagnetisk induktion om at en forandring i et magnetfelt udleder elektricitet. Det modsatte er også gældende. Altså at en elektrisk ændring udleder eller skaber magnetfelter.

Hvis vi ignorer det meste af guitaren, men kigger i stedet på de dele af en elektrisk guitar der står for selve produktionen af lyde. Så ser vi at metalstrengene fungerer lidt som dynamoer, på den måde at de laver elektricitet når du bevæger dem. Under strengene er der elektricitetsopsamlende pickups. Hver af disse pickups består af en eller flere magneter med hundredevis eller tusindevis af spoler af meget tynd metaltråd snoet omkring dem. Magneterne danner et magnetisk felt omkring dem, der går op forbi strengene. Derved bliver strengene delvist magnetiseret. Når en streng så spilles og dermed vibrerer, så laver de en lille elektrisk strøm der bevæger sig igennem pickup’enes spoler. Pickup’ene er forbundet til en elektrisk kilde der opsamler og bearbejder parametrisk ( sideløbende i interval) information der kommer fra hver streng. Derefter sendes strømmen til en forstærker, som afspiller musikken. Ofte er en forstærker og højtaler bygget ind i samme enhed.

Hvad er Feedback / Resonans?

Feedback fra en elektrisk guitar sker når lyden fra en guitars forstærker for pickup’erne og/eller strengene til at vibrere synkront, nærmest i sympati. Den kombinerede vibration omdannes til et elektrisk signal som derefter bliver sendt tilbage til forstærkeren, hvilket forstærker den originale lyd. Dette forsætter indtil signalet ophører eller at signalblandingen rammer forstærkerens outputgrænse. Her er der som ofte en afbryder på forstærkeren og ellers så står den af.

5G – Sundhed

Hvorfor dette indlæg?

De fleste der læser artikler på internettet støder, i højere eller lavere grad, på artikler og indlæg der omhandler “farlig” 5G stråling. Disse artikler kommer typisk fra velmenende personer som har på hjertet på rette sted og gerne vil passe på os andre og dermed også dem selv. Desværre er disse velmenende mennesker, sjældent i stand til at bevise deres bekymring med andet end henvisninger til andre påståede og udokumenterede kilder. Når det så en sjælden gang lykkedes én at henvise til videnskabelige artikler, så viser det sig altid at artiklerne enten er falske eller udført på en måde der fremviser data så de fremstår som reelle, men med dybe fejl under overfladen. Fejlene ses oftest i metode, protokol eller reproducerbarhed. Lignende tendenser opstod også da 3G og da 4G skulle udrulles, ligesom der findes lignende postulater om vacciner, årsagen til COVID-19, Jordens form, rumrejser, mm.

Trådløs stråling er ikke påviseligt skadeligt, selvom billeder som dette kan anlede at tro det
Oplysning

Jeg vil i dette indlæg samle fakta fra anerkendte kilder og forsøge at præsentere eller oplyse om de vigtigste pointer i forskningen på en let forståelig måde. I det materiale, jeg har tygget mig igennem, er det endnu ikke lykkedes at finde beviser for at trådløs kommunikation på de nuværende og snarligt kommende frekvenser gør skade på levende væsener. Derfor vurderer jeg at det ikke er skadeligt, at benytte, så længe man bruger teknologierne som producenterne foreskriver og myndighederne anbefaler.

Jeg har i mit indlæg Trådløst hvad er det? brugt følgende illustration til at vise på hvilke frekvenser, de forskellige teknologier, fungerer.

Imidlertid viser illustrationen ikke effekten (mængden af energi/watt) der afsendes. Det er en meget vigtig faktor når man snakker om sundhed og sikkerhed i forhold til radiobølgestråling. Bemærk desuden at ordet stråling ikke betyder farligt. Det afhænger af strålingens karakter. Man kan sige at der er tre meget vigtige faktorer for om en radiobølge er skadelig:

  1. På hvilken frekvens bliver den mængde energi afsendt?
  2. Hvor meget energi bliver der afsendt på en given frekvens?
  3. Er radiobølgerne ioniserede eller ikke-ioniserede?

1. Når vi i Danmark snakker trådløse frekvensbånd, så bruges frekvenserne mellem 100Mhz og 5000Mhz eller rettere 5Ghz. 5G-Nettet kommer til at kunne arbejde på frekvenser mellem 100Mhz og 100Ghz. Så kunne det jo være nærliggende at tænke: “100Ghz – Det er jo 20 gange mere energi end 5Ghz. Det lyder farligt?” Til det må vi forstå at der ikke nødvendigvis tilføjes mere energi til den trådløse radio på grund af at frekvensen stiger. Faktisk er planen for de høje frekvenser at der skal flere master der står tættere på hinanden med en lavere effekt. Altså mindre energi der sendes ud på de højere frekvenser.

Jeg prøver at forklare mulighederne for bredbåndsdækning, ved hjælp af en tænkt analogi over til veje og køretøjer, for at give en måde man kan forholde sig til videnskaben bag. Bær over med mig hvis den ikke helt giver mening eller holder vand. Jeg håber I vil forstå. I velkomne til at foreslå alternativer eller rettelser.

Man kan sige at frekvenserne er de veje eller kanaler, som kommunikationen kan “køre” på og køretøjerne er data der skal sendes ad disse veje eller kanaler.

  • De lave frekvenser, 100Mhz til 900Mhz, er meget smalle veje og derfor kan de store hurtige lastbiler ikke køre der med al deres last. Til gengæld kan et sendebud, på ben eller cykel, sagtens komme hurtigt frem, selv ad smalle stier op gennem bakker og bjerge. På samme måde kan data lettere penetrere eller bevæge sig igennem hårde materialer og stadig nå frem, da de er mindre “bredde”. Her kan der ikke være meget data med, men den kan komme ind ad langt flere sprækker.
  • De lidt højere frekvenser mellem 1Ghz og 5Ghz er større landeveje op til motortrafikveje. Her kan motorcykler med små pakker, biler med mellem pakker og små lastbiler kommer frem i ordentlig fart og med større mængder data. De kan til gengæld ikke nå helt op i bakkerne, selvom de godt kan penetrere mindre forhindringer undervejs.
  • De høje frekvenser som der tiltænkes 5G, altså mellem 5Ghz og 100Ghz, er kæmpestore, flersporede motorveje hvor de helt store lastbiler kan køre. De kan køre nærmest uden hastighedsbegrænsning. Her kan der sendes enorme mængder data på meget lidt tid. Den eneste regel her er, modtager skal kunne se afsender. Der masser af sende og modtagerstationer undervejs. Her kan data ikke bevæge sig igennem materialer uden at signalet ødelægges, men i frit syn er der høje hastigheder i vente. Som illustrationen herunder viser – Jo højere frekvens jo flere svingninger er der. Hver svingning giver plads til en potentiel dataoverførsel.

Ovenstående analogi, er et udkast og der arbejdes på bedre. Kom gerne med forslag til forbedringer eller alternativer.

2. Den mængde energi der afsendes på et givet frekvensspektrum afhænger af hvad formålet er. I en 800watt mikrobølgeovn, som fungerer som et lukket Faradays bur med trådløs energi inden i, afsendes der der 800 watt, når den er på fuldstyrke, i det tidsrum som man angiver. Det er selvsagt farligt for vævet inde i mikrobølgeovnen. Uanset om det er kartoffelvæv eller andebryst. Det er derimod ganske harmløst hvis mikrobølgeovnen, som en mobilmast-celle, kun skulle sende mellem 10 og 50 watt, fra en afstand på 15-3000 meter gennem luften. Kartoflen eller andebrystet ville aldrig se en målbar stigning i temperatur på baggrund af energien der afsendes. Cellevævet ville være intakt. Altså det kan ikke skade kroppens celler.

Bemærk i min fortænkte illustration, at ænderne i luften er upåvirkede. Faktisk påvirkes fugles indre kompas en anelse af elektromagnetisk energi. Det kan dermed forstyrre deres retningssans. Det essentielle er at det ikke fysisk skader deres væv i kroppen når de udsættes for energien, som typisk ligger mellem 10-50 watt.
Bemærk også at det signal mikrobølgeovnen udsender er direkte livsfarligt. Mikrobølgen ovnen sender 800 watt ud på fuld styrke og kan ved hjælp af stråler i mikrobølgefrekvenserne, gennemtrænge og opvarme/skade cellerne i maden. Heldigvis er energien indkapslet i et Faradays bur og dermed sikkert. Så din mikrobølgeovn er altså stadigvæk et sikkert køkkenredskab så længe du bruger det som producenten foreskriver.

3. Forskellen på ikke-ioniserende og ioniserende stråling er at ikke ioniserende stråling ikke har energi og/eller frekvens til at ødelægge genetisk materiale ved direkte påvirkning. Altså den ikke ioniserede stråling eller de lavfrekvente radiobølger kan ikke skade levende væsener. Den ioniserede stråling eksempelvis røntgenstråling, UV-stråling eller gammastråling derimod kan skade celler i levende væsener og er der for farligt i større mængder. Uanset om man taler om de ikke-ioniserede eller de ioniserede stråler gælder det at der findes grænseværdier, fastsat af myndighederne. De er sat for at sikre at man ikke uforvarende kommer til at skade andre eller sig selv med stråling.

Dette indlæg er under udarbejdelse.

Kilder til indlægget:

http://www.bfs.de/SiteGlobals/Forms/Suche/BfS/EN/SARsuche_Formular.html https://www.teleindu.dk/wp-content/uploads/2020/11/Mobiloperat%C3%B8rers-EMF-vejledning-M%C3%A5ling-af-en-antenneposition-01112020.pdf https://vbn.aau.dk/ws/portalfiles/portal/310743775/StraalingFraMobilmasterJBAGFP2004.pdf https://www.who.int/peh-emf/meetings/archive/en/keynote5dawoud.pdf https://www.sst.dk/da/viden/straaling/straaling-i-hverdagen https://www.sst.dk/da/Viden/Straaling/Fakta https://www.sst.dk/da/Viden/Straaling/Fakta/Ioniserende-straaling https://www.nbi.ku.dk/spoerg_om_fysik/fysik/radar/ https://kefm.dk/tele-og-bredbaand/regler-om-mobilstraaling-og-5g https://ens.dk/ansvarsomraader/frekvenser/fakta-om-5g-og-mobilstraaling https://ens.dk/ansvarsomraader/telepolitik/5g

Mobile netværk 1G-2G-3G-4G-5G-6G

Historietimen

Det har siden 1951 været muligt at montere en telefon i bilen. Dengang blev samtalerne manuelt ekspederet fra Rigstelefonen, det var dog nødvendigt at vide hvor i landet ens bil og modpartens bil befandt sig. Derudover var der den ulempe at samtaler kunne aflyttes af andre med biltelefon.

primaryImage
Radiotelefon PTM888X

Der blev derfor indgået et samarbejde, i slutning af 70’erne, på tværs af de nordiske lande; Danmark, Sverige, Norge og Finland om at udvikle et automatisk mobiltelefonsystem. Det blev kaldt Nordisk Mobil Telefonsystem eller NMT. Det blev idriftsat imellem 1981 og 1982. På det tidspunkt dækkede det de fire lande. Idéen var at brugsfunktionalitet skulle minde så meget som muligt om det almindelig telefonnet.

Centralen, der styrede systemet, hed AXE. Det kunne registrere, hvor mobiltelefonen befandt sig uden at den der ringede op, behøvede at vide hvor den anden person var. NMT-Nettet blev udsendt på 450Mhz frekvensbåndet og i 1986 var det fyldt op og derfor blev 900Mhz frekvensbåndet taget i brug.

NMT-nettet fik flere funktionaliter, som omstilling af opkald til et andet nummer ved ubesvaret og mulighed for at kode, ofte benyttede, numre ind i telefonen. Senere kom Grønland, Island, Holland, Polen, Tyrkiet og Slovenien også til. I 1985 var NMT-Nettet verdens største med 110.000 abonnementer. Generelt set har NMT været med til at bane vejen for GSM netværket vi kender i dag.

GSM – 1. Generation

I København, år1987, blev der underskrevet en kontrakt på en samarbejdsaftale om udvikling og udrulning af Global System for Mobile Communication eller GSM-Standarden. Der var tretten lande der underskrev kontrakten. Det blev efterfølgende besluttet oprettet kvalitetsstandarder og at allokere bestemte frekvensbånd til GSM-nettet. De besluttede at benytte 900Mhz- og 1800Mhz frekvensbåndene til det. I 1991 blev det første opkald på GSM-nettet foretaget og i dag er GSM stadigvæk standarden ,for mobiltelefoni, i langt de fleste lande i verden. Det var også i GSM Standarden at man valgte at bruge SIM-kort (Subscriber Identity Modulecard) til at give adgang for telefonnummeret på mobilen. GSM-Nettet var også et analogt net. Dette var 1. Generation af GSM nettet Altså 1G.

2G -Anden generation

Anden generation af GSM-nettet (2G) var først og fremmest et digitalt netværk. Det digitale netværk kom også til at indeholde en ny standard General Package Radio Service (GPRS) som kunne overføre data trådløst med op til 40kbit/s (kilobit per sekund). Denne udgave blev også kald for 2.5G. Senere, under 2G, blev der videreudviklet en ny udgave af GPRS som blev kaldt EDGE (Enhanced Data Rates for GSM Evolution. EDGE kunne overføre data med op til 384kbit/s. EDGE kaldes også 2.75G

Dernæst indeholdt 2G, SMS (Short Message System). Det blev oprindeligt udviklet til forretningsfolk, som et værktøj til at sende og modtage korte beskeder til og fra forbindelser. Ligesom “Pageren”, i blandt andet USA, havde revolutioneret forretningsgange. Det skulle vise sig, sidenhen, at det var den yngre generation der tog SMS til sig. Det skete i sådan en grad at de udviklede deres eget sprog på platformen. Til at starte med var teksten begrænset til 128 karakterer og prisen pr. SMS kunne være op til 5 kr. Derfor lavede de forkortelser for alt der kunne forkortes og udviklede ansigtsmimiker repræsenteret som smileys i form af kolon, bindestreg, parenters sammensat så de lignede simple versioner af nutidens emojier.

En sidste stor ting der blev blev udviklet i 2. generation af GSM var bruges af TDMA. TDMA står for Time Division Multiple Access, som er en teknologi der tillader flere brugere at bruge samme del af et frekvensbånd på én gang. Dette gøres ved at dele dele frekvenserne op i subfrekvenser. TDMA er kompleks og kræver en meget præcis synkronisering af tids mellem modtager og afsender. Herunder ses et eksempel på TDMA, hvor et frekvensbånd deles af A, B og C. Hver bruger for tildelt et tidsrum til at sende og modtage data. I eksemplet ses det at bruger B sender efter bruger A og derefter bruger C.

TDMA eksempel.

De første teknologier på internettet var på 2G, Det var alt fra små hjemmesider på Web Application Protocol (WAP) til specielt udviklede applikation der kunne sende og modtage specifikke data over GSM netværket.

3G – Tredje generation

Den tredje generation af GSM teknologien er en opgradering der primært øger båndbredden. Den teoretiske 3.5hastighed er 144kbs/s og senere i 3.5G og 3.75G. 3.5G er en forbedret udgave af 3G som benytter en teknologi kaldet High Speed Download Packet Access (HSDPA). Det er baseret på UMTS og giver større kapacitet og hastighed samtidig med at svartiderne reduceres. Hastighederne kan nå op på 14 Mbit/s. Med 3.75G eller Evolved High Speed Packet Access (HSPA+) kan hastighed op til 168Mbit/s opnås med MIMO antenne teknik. Med 3G teknologien åbnede muligheder for hjemmesider på mobile enheder, videomøder, overførsel af større datamængder. Mobile bredbåndsforbindelser som erstatning for faste bredbåndsforbindelser eller som løsninger, steder hvor der ikke var/er fast bredbånd tilfældigt.

4G Long Term Evolution

4. Generation af GSM også kaldet LTE er blandet andet defineret som en standard der skal kunne levere 100mbit/s (Megabit) til enheder der er i høj bevægelse. Altså køretøjer som biler og tog, samt levere 1Gbit/S (Gigabit) for stationære eller enheder i lav bevægelser som fodgængere. Selvom standarden for teknologien foreskriver disse høje hastigheder, så er det sjældent at man praktisk kan opnå disse. Se eventuelt indlægget om Transporttab. 4G er designet til at håndtere alt hvad 2G og 3G har kunnet, samt medfødt IP-Telefoni, Gaming servicer, mobilt TV i HD, videokonferencer i stor skala med tusindvis af brugere, 3D TV, Sociale Medier, samt understøttelse af IOT-Enheder (Internet of Things).

Voice over LTE

VoLTE er en trådsløs kommunikations standard der fungerer på mobiltelefoner, IOT-enheder og alverdens data-terminaler. Voice over LTE har tre gange så meget voice og data kapacitet som 3G over UTMS. For at kunne lave et Voice og LTE opkald i HD Voice, skal endepunkterne, masterne og centralerne alle understøtte VoLTE. I 2019 understøttede 262 operatører i over 120 lande VoLTE.

5G – Femte generation

Bagved 5G-Teknologien ligger der en masse funktionaliteter som:

  • Network slicing som er en netværksarkitektur der gør det muligt at multiplexe (det at kombinere flere signaler til ét signal på et delt medie), virtualiserede og uafhængige logiske netværk på den samme underlæggende fysiske netværks infrastruktur. 
  • Orthogonal Frequency-Divsioning Multiplexing (OFDM) er en teknologi som fremmedordene indikerer der involverer at parallelle signaler kan blive opdelt og samlet igen på tværs af frekvenser. Den bruges for at undgå problemer med Doppler-effekten (ændringer i signalbølgen) og Multipath-propagation (Det at et signal kan nå en antenne af flere veje og dermede skabe interferens undervejs. Ved brug af OFDM mindsker man begge dele. 
  • MIMO eller Multiple Input Multiple Output, som også bruges i 4G er en teknologi der gør det muligt at bruge flere antenner til at modtage og sende samtidigt og dermed udnytte en større del af frekvensbåndet og dermed den tilgængelig båndbredde og hastighed på én gang.
Teknologier og deres årtier

Kort og godt. 5G:

  • Bliver hurtigere (op til 10Gbit/S)
  • Kan håndtere flere brugere 100x flere end på 4G)
  • Har lavere svartider (med mulighed for svartid på under 1 sekund)
  • er mere stabilt
  • er designet til at samle netværk
  • Forventes at blive benyttet af 1.7 milliarder enheder.

6G – Next Gen

Den 6. Generation af GSM-nettet, som bliver efterfølgeren til 5G mobilteknologi kommer til bruge højere frekvenser end 5G nettet, formentligt i Terahertz (Thz) spektrummet. Derved bliver der væsentlig højere netværkskapacitet og meget lavere svartider. Ét af målene, for 6G er at det skal kunne understøtte svartider i mikrosekunder så svartidere bliver 1000 gange bedre eller 1/000 del af dem vi kender i dag fra en svar tid på 1 millisekund. Derudover vil sampling rates (den hastighed eller det antal af lyderbidder man kan “smage” på, på én gang) foregå meget hurtigere. Kombinationen af sub-mm lydbølger (lydbølger på under 1mm) og frekvensvalg baseret på elektromagnetisk absorberingshastighed forventes at kunne udvikle trådløse sensorer betydeligt.

Teknoligien 6G forventes at understøtte dataforbindelser på 1 terabyte pr. sekund (Tb/s). Hastigheden vil være ulige noget vi har set før og den vil forøge 5G mulighederne for produkter der benytter sig af 5G væsentligt lige som det vil være muligt at danne eller opfinde helt nye teknlogier der på trådløse forbindelser vil kunne forbinde, detektetere, indsende , modtage og behandle, højopløselige billeder og video, informationer med flere og datatunge lag indlejret. Det forventes særligt at kunstig intelligens (AI), autonom infrastruktur, video- og billedbehandling, samt tilgængelighedsteknologier og placeringsteknologier vil få markante forbedringer på baggrund af 6G.

Det vil være muligt med kuntig intelligens, med de høje hastigheder, at server infrastruktur 6G-Netværket og endepunkterne snakker så godt sammen at de automatisk og autonomt selv finder det oplagte eller bedste sted at beregne data, både hvor lagring, processering og deling skal foregå. Der tales allerede i dag om at tilføje Mobile Edge Computer (MEC – som er det man kalder ovenstående AI-drevne autonome infrastruktur) som en tilføjelse til 5G, men MEC vil blive en del af alle 6G netværk. Dermed vil Edge og Core computing bliver sømløst integreret i kommunikations og server infrastrukturen allerede før 6G-netværket idriftsættes. Hvilket vil betyde at de allerede tages i brug under 5G, men først opnår der potentiale når 6G er tilgængeligt.

Trådløst hvad er det ?

Hvad er trådløst?

Trådløs er en måde at transportere signaler uden brug af faste forbindelser som kobberkabler eller fiberoptiske kabler. Signalet udbreder sig i det frie rum. Når folk snakker om trådløs er det som oftest trådløs kommunikation de refererer til. Trådløs kommunikation er når information overføres mellem enheder der ikke er forbindet via fast forbindelse (kabel).

Hvor bruges trådløst?

Før vi går i dybden med hvordan trådløs kommunikation fungerer, bør vi kigge på hvordan trådløs anvendes. I næsten alle scenarier bruges trådløs kommunikation til at sende og modtage data. Det kan enten være envejs-kommunikation som Radio eller gammeldags Flow-TV eller det kan være tovejs-kommunikation, hvor en enhed fungerer som sender og den anden som modtager. Det andet scenarie med tovejs-kommunikation bruges i satelitter, Trådløse routere og Access Points (AP’er) eller i mobilnetværk, eksempelvis 2G/3G/4G eller 5G teknologi, som mellemliggende punkter der sørger for at forbinde kommunikationen mellem sender og modtager.

Hvordan fungerer trådløs kommunikation?

For at trådløs kommunikation kan ske, skal vi have data der skal transporteres uden kabler. Disse data transportes i stedet gennem det der kaldet signaler (som består af elektromagnetiske bølger). Så hvordan skaber man et signal der kan sendes trådløst?

Det starter med transmitteren (senderen) hvor en oscillator skaber en periodisk bølge (signalet). Dette signal udbreder sig gennem interne kabler i enheden op til antennen. Da antennen er en leder, vil den elektriske strøm bevæge sig ud til enden af antennen. Antennen udstråler den skiftende spænding (den periodiske bølge af strøm) som en elektromagnetisk bølge. Her starter det trådløse, altså i det at antennen konverterer den elektriske spænding til bølger i luften.

Where does wireless start

Signalets frekvens.

Afhængigt af hvor hurtigt, signalet fra oscillatoren skifter, har de udgående bølger forskellige frekvenser. Disse frekvenser kan benyttes til forskellige formål. Man deler de forskellige frekvenser op i frekvensdomæner og samler disse i et frekvensspektrum. Anvendelseformål deles også op i frekvensdomæner. Eksempelvis kan der nævnes: Wi-Fi, TV-udsendelse, mobilkommunikation, Satelit, Radioudsendelse, ISM-båndet, GPS og mange flere. Det er regeringen i det enkelte land der er ansvarlige for tildele frekvensbånd til forskellige formål.

Grunden til at man opdeler frekvenser til forskellige formål er for at undgå kollision imellem domænerne. Ved at adskille forskellige teknologier til deres egne frekvensbånd, kan disse ikke “larme”. Når et signal “larmer” på samme frekvens bånd som et andet, kan ingen af de to signaler komme igennem eller også vil det som minimum betyde væsentlige forringelser af signalet.

Hvordan bevæger et signal sig?

Et signal bevæger sig typisk ikke direkte til modtageren efter at være blevet sendt. Antennen på transmitteren udstråler signal i flere retninger. Signalbølgen kan reflektere sig på bygninger, afbøjes på skarpe kanter eller splittes på mindre genstande og stadig nå modtageren. Undervejs vil bølgen lide tab i form af dæmpning og forsinkelse. Modtageren opfanger alle dele som et kombineret signal. Når der er mere end en rute mellem transmitter og modtager, kalder man dette for en “flérstis-kanal” (multipath channel).

Radio channel effects overview

Hvad sker der i transmitteren?

Vi ved at modtageren skal håndtere det forvrængede og blandede signal for at kunne afkode data. Dette er en kompliceret opgave, da signalet indeholder mange uønskede dele. For at gøre det lettere, for modtageren, tilføjes yderligere led i processen ved transmitteren. Før vi sender data afsted, koder vi data ind i pakker. Dette tilføjer yderligere bits til data, som som gør det lettere at genskabe data, under afkodningen, ved modtageren. Efter at dataene er indkodet i pakker, bliver bits placeret på symboler, moduleret til adskillelige signalformer og sendes ud gennem antennen.

Transmitter components

Hvad er Transporttab

En introduktion til transporttab

En transmitter eller en sender, udstråler generelt et signal som har en specifik styrke ved at bruge en antenne. Signallet bevæger sig i miljøet som en elektromagnetisk bølge og taber styrke under transport. Derfor kendes fænomenet som transporttab. Den elektromagnetiske bølger er ikke klar over hvor modtager(ne) af signalet er henne. Derfor, når signalet er udsendt, udbreder signalet sig i den retning, som antennen udsender signalet. Modtageren opfanger en vis del af det udsendte signal, afhængig af flere faktorer som afstand, landskabs-topologi, generelle forhindringer osv. , derefter bliver signalet afkodet så informationen kan bruges i enheden der modtager signalet.

Den elektromagnetiske bølge udbredes og bevæger sig længere og længere væk. På grund af dette, vil den indledende signalstyrke, som transmitteren sendte, spredes over et større areal. I begyndelsen er al den transmitterede energi indesluttet i en lille “boble”. Hvis modtageren er tæt på transmitteren, vil den kunne opfange større signalstyrke. Hvis den er længere væk fra transmitteren, vil sginal-“tætheden” være mindre og den modtagende antenne opfanger kun en brøkdel af den udsendte styrke. Figuren herunder illustrer dette fænomen:

Teoretisk baggrund

Som det er forklaret foroven ved vi at styrken i signalet reduceres som signalet udbredes. Så er det interessant at kigge på forholdet mellem tabet og aftanden. Er afstanden den eneste variabel i denne ligning?

Nu bliver det lidt tungt, men se illustrationen og forklaringen herunder:

Transporttab forklaring

Der er mange parametre (variabler) involveret:

Afstand, bølgelængde og sendestyrke. Transporttab afhænger af afstand og bølgelængde. Formlen ovenover bekræfter det vi oplever i virkligheden, at større afstand betyder mindre styrke. Det man dog også er nødt til at tage højde for er bølgelængden. Jo kortere bølgelængde jo størrer dæmpning af signalstyrken. Dette betyder at højkfrekvente signaler (altså kortebølgelængder) bevæger sig i en kortere længde end lavfrekvente signaler. Det er blandt andet forklaringen på at 802.11ad anvendt på 60GHz, kun kan bruges i et enkelt rum eller at 4G. anvendt på 700Mhz kan række væsentligt længere end 4G anvendt på 2600Mhz.

Tab af styrke, undervejs, afhænger ikke af den afsendte styrke. Hvis dæmpningen på signalets vej er 20dB vil det påvirke et stærkt signal på samme måde som var det et svagt signal. Forskellen vil dog være synligt i den modtagne signalstyrke. Hvis der sendes et svagt signal og det dæmpes endnu mere undervej, vil det ikke kunne afkodes ved modtagelse.