Jitter og hakkende/forvrænget tale

Videnskaben bag Jitter

Jitter er en slags tidsvariation i ankomsten af datapakker i et netværk. Det opstår, når datapakker, der sendes med jævne mellemrum, ankommer med forskelligt-artede forsinkelser. Dette kan skyldes fysiske og tekniske faktorer i netværket, såsom køer i routere, varierende trafikbelastning, begrænsninger i netværksinfrastrukturen, trådløs signal tab og mange flere.


Netværkskommunikation

Når data overføres via et digitalt netværk (f.eks. VoIP-opkald eller videostreaming), bliver lyden opdelt i små datapakker, som sendes sekventielt gennem netværket.

I en ideel situation ville alle pakker ankomme med en ensartet tidsforskel (f.eks. hver 5. millisekund). Men i virkeligheden påvirkes pakkerne af:

  • Netværksforsinkelse (latency): Tid det tager for en pakke at rejse fra afsender til modtager.
  • Pakketab: Nogle pakker går tabt undervejs og bliver enten genskabt eller ignoreret.
  • Køer i routere og switches: Hvis netværket er belastet, kan pakker blive midlertidigt opbevaret i buffere, hvilket skaber forsinkelser.

Jitter måles som variationen i forsinkelsen mellem ankomne pakker. Hvis variationen er for høj, vil modtageren opleve hakkende eller forvrænget lyd.


Matematiske modeller for jitter

Jitter kan modelleres med stokastiske processer, som beskriver tilfældige variationer over tid. Nogle af de mest anvendte modeller er:

a) Normalfordeling (Gaussian jitter)

  • Hvis jitter skyldes tilfældige små variationer i netværkstrafikken, kan forsinkelserne følge en normalfordeling (gaussisk fordeling), hvor de fleste pakker ankommer med en gennemsnitlig forsinkelse, men nogle få er forsinkede eller ankommer hurtigere end normalt.

b) Poissonfordeling (Burst jitter)

  • Hvis jitteren skyldes periodiske overbelastninger i netværket, kan den følge en Poisson-proces, hvor forsinkelser sker i „burst‟ – pludselige, korte udbrud eller perioder med høj jitter, efterfulgt af stabile perioder.

Matematisk kan jitter ofte beregnes som standardafvigelsen af forsinkelserne mellem datapakker:

hvor:

  • di er forsinkelsen for pakke i
  • d er den gennemsnitlige forsinkelse
  • N er antallet af målte pakker

Netværksprotokoller og Jitter-buffer

For at kompensere for jitter har mange systemer en jitter-buffer, som opbevarer pakker i kort tid, før de afspilles. Dette giver mulighed for at omorganisere pakker og sikre en mere stabil lydstrøm.

  • Dynamiske jitter-buffere: Justerer buffertiden baseret på målinger af jitter i realtid. Jo større jitter, jo større buffer opbygger systemet.
  • Statisk jitter-buffer: Har en fast forsinkelse, men kan være ineffektiv, hvis netværksforholdene ændrer sig.

Nogle netværksprotokoller, som RTP (Real-time Transport Protocol), anvender tidsstempler og sekvensnumre for at korrigere Jitter.


Andre konsekvenser af Jitter

  • I digitale lydsystemer kan Jitter føre til forvrængning af lydsignaler.
  • I videooverførsel kan Jitter føre til hakkende billeder eller synkroniseringsproblemer mellem lyd og video.

Opsummering af Jitter

Jitter er en kompleks effekt forårsaget af variation i datapakkernes forsinkelser under transmission. Den påvirker alt fra VoIP-opkald til finansielle systemer og elektroniske kredsløb. Ved at bruge jitter-buffere og QoS (Quality of Service) kan netværket minimere Jitter og sikre mere stabile forbindelser.

Forvrænget lyd

Den tekniske betegnelse for den robotagtige lyd i digitale telefonsamtaler og lydtransmission er ofte relateret til følgende begreber:

1. Vocoder-artifakter

  • En vocoder (Voice Coder) er en teknologi, der analyserer og syntetiserer tale. Hvis codec’et bruger stærk komprimering eller genskaber manglende datapakker, kan stemmen lyde kunstig og mekanisk/ metallisk.
  • Denne effekt kaldes ofte for vocoder-artifakter, fordi lyden minder om den kunstige tale, som f.eks. robotstemmer eller tidlige digitale stemmegeneratorer brugte.

2. Quantization noise (kvantiseringstøj)

  • Når lyddata konverteres fra analog til digital, afrundes værdierne til nærmeste digitale trin.
  • Hvis bitraten er lav, altså indeholder få data om lyden, kan afrundingsfejl føre til en trappetrins-effekt i lyden, som kan give en hakkende eller metallisk klang.Trappetrins-effekten (quantization error) opstår, når et analogt signal konverteres til digital form med en lav opløsning (lav bitrate eller lav bitdybde). Når en kontinuerlig lyd (analog bølge) skal repræsenteres digitalt, sker det ved, at lyden samles op (samplingsfrekvens) og afrundes til nærmeste mulige værdi (kvantisering). Hvis der ikke er nok bit til at repræsentere små ændringer i lyden, vil signalet fremstå som hakvist i stedet for glat – ligesom en trappe i stedet for en skråning.

3. Pakketabsskjul – Packet loss concealment (PLC-artifakter)

  • Når datapakker går tabt under transmission, forsøger systemet at udfylde hullerne ved at gætte, hvad den manglende lyd var.
  • Dette kan give en robotagtig eller hakkende lyd, fordi systemet ikke kan genskabe den originale lyd præcist.

4. Tidsforvrængning (Temporal warping)

  • Opstår, når jitter (varierende forsinkelse) får systemet til at strække eller komprimere lyd for at synkronisere talen.
  • Hvis stemmen afspilles hurtigere eller langsommere, kan den lyde unaturligt og mekanisk.

5. Spektral forvrængning (Spectral distortion)

  • Visse kodeker (f.eks. G.729) fjerner høje frekvenser og detaljer i stemmen for at spare båndbredde.
  • Dette kan resultere i en metallisk, nasal eller hul lyd, som kan minde om en robotstemmes begrænsede tonalitet.

6. Auto-tune-effekt

  • Selvom auto-tune normalt bruges til musik, kan en lignende effekt opstå, når et Codec forsøger at rekonstruere tale baseret på forudsigelser.
  • Hvis netværket er ustabilt, kan stemmens tonehøjde variere unaturligt, hvilket får den til at lyde kunstig.

Opsummering på forvrængning

Forvrængning opstår, når et lydsignal ændres uønsket under transmission, optagelse eller behandling. Det kan skyldes både digitale faktorer (komprimering, jitter, pakketab, kvantisering) og analoge faktorer (forstærkning, overstyring, dårlige komponenter).

I digitale systemer fører forvrængning ofte til robotagtig, hakkende eller metallisk lyd, især ved lav båndbredde og dårlig netværkskvalitet. I analoge systemer kan forvrængning skabe uønskede overtoner eller klipping, hvilket påvirker lydens naturlighed.

LTE (Long-Term Evolution)

Hvad er LTE (Long-Term Evolution)?

LTE (Long-Term Evolution) er en fjerde-generations (4G) trådløs standard der øger netværkskapacitet og hastighed for mobiltelefoner og andre enheder der anvender trådløs mobiltelefoni, når man sammenligner med 3G teknologi. Alt er blevet markant forbedret med 4G. Der er højere generelle og spidshastigheder ligesom der er kommet fleksibilitet i båndbredde og frekvenser.

LTE giver mulighed for op til 100 mbit/s download og 30 mbit/s uploadhastigheder. Der er lavere svartider, skalérbar båndbreddekapacitet og bagudkompatibelt med eksisterende GSM og UTMS teknologier. Videreudviklingen af LTE, kaldet LTE-Advanced (LTE-A) har ydermere spidshastigheder på op til 1000 mbit/s.

Selvom LTE normalt kaldes 4G LTE, er LTE teknisk set langsommere end 4G, men stadig hurtigere end normale 3G hastigheder. Derfor kaldes LTE også for 3,95G. 4G er stort set tilgængeligt overalt og er stadig den mest brugte teknologi, hvor der ikke er 5G tilgængeligt. Der findes også tale på LTE, kaldet Voice over LTE eller bare VoLTE i daglig tale. Der findes endnu ikke Tale på 5G og derfor hopper telefoner fra 5G ti 4G netværk når der kommer et taleopkald på telefonen.

LTE har også en direkte rolle i udviklingen af nuværende 5G standard 5G New Radio (5GNR). De tidlige 5G netværk kaldes 5G Non Stand Alone (5G NSA), disse kræver et 4G LTE lag for at kunne styre 5G datasessioner. 5G NSA netværk kan igangsættes og supporteres af eksisterende 4G framework som gør at de er billigere at indkøbe, drive og administrere for teleoperatører der udruller 5G.

Hvordan fungerer LTE?

Et LTE netværk benytter multibruger versionen af orthogonal frequency-division multiplexing (OFDM) modulationskema, kaldet orthogonal frequency-division multiple access (OFDMA), til downloadsignalet.

OFDMA muliggør at LTE downloadsignalet kan transmittere data fra én basestation til flere brugere ved højere datahastigheder end på 3G, med forbedret båndbredde effektivitet. Enkeltbærer FDMA bliver brugt til upload signalet, som reducerer det strømforbrug der kræves for at transmittere mobilsignalet.

De øvre lag af LTE er baseret på TCP/IP protokollen, som er den samme der bruges i et almindeligt IP-netværk som i de fleste kablede netværk. LTE understøtter datatransmissioner som blandede data, lyd, video og beskedtrafik.

LTE-A benytter multiple input, multiple output (MIMO) antenneteknologi der minder ret meget om det der bruges i IEEE 802.11n WiFi standarden, et trådsløst local area network. MIMO og OFDM gør det muligt at forbedre signalet i forhold til støj ved modtageren, hvilket giver forbedret trådløs netværksdækning og båndbredde, særligt i bytætte områder.

4G LTEs funktioner

LTE giver brugerne følgende funktioner blandt mange:

  • Lyd og video streaming. LTE har hurtigere download og upload hastigheder end 2G og 3G.
  • Real-time forbindelse til services. Med Voice over LTE, kan brugerne tale med andre uden at opleve forsinkelser, lag eller jitter.
  • Endnu hurtigere hastigheder med LTE-Advanced. Download og upload ved LTE-Advanced er to til tre gange hurtigere end standard LTE.
  • Carrier aggregation. Denne LTE-Advanced funktion forbedrer netværkskapaciteten ved at tilføje frekvensbåndbredde op til 100 Mhz på tværs af fem frekvensspektrum på 20 Mhz båndbredde hver. LTE-A mobiler kombinerer frekvenserne fra flere spektrum for at forbedre signal, hastighed og pålidelighed.

LTE Internet of Things (IoT)

I Juni 2016, udgav 3GPP Release 13 IoT cellular connectivity options som beskriver IoT machine-to-machine (M2M) brug. LTE-maskine-type kommunikation (LTE-M) og NarrowBand IoT (NB-IoT) blev begge baseret på LTE standard, men med markante ændringer for at tillade WAN løsninger med lavt strømforbrug.

LTE-M giver datahastigheder på omkring 1 Mbit/s, mens NB-IoT supporterer op til 26 Kb/s i downloadhastighed. Disse reducerede hastigheder har øget batterilevetiden på M2M enheder der bruger IoT mobilstandarder. Sensors og andre enheder der kræver mobilitet på mobilnetværk vil man kunne bruge NB-IoT der kan understøtte batterilevetider på op til 10 år. LTE-M kan supportere op til 10 års batterilevetid på to AA batterier, ved enheder der er statistike og som kun afsender datapakker i et par sekunder om dagen. Hvis en enhed bevæger sig på LTE netværket og bruger LTE-M voicefunktonalitet vil batteritiden reduceres betragteligt.

Hvad er et privat LTE netværk?

Private LTE netværk er nedskalerede udgaver af offentlige LTE netværk. De er designet til at tilbyde mobildækning af private firmaer, campus’er, pakkedistributionscentre, lufthavne og lignende.

Private netværk bruger ulicenserede eller delte spektrum for at give dækning til mobiltelefoner eller andre enheder. Dette inkluderer det globale ulicenserede 5Ghz og 3,5 Ghz frekvensbånd.

For at etablere en privat LTE service skal en virksomhed benytte en LTE mikrocelle, small-cell eller core-netværk servere med enheder der understøtter dette med simkort. Flere af de store mobilproducenter supporterer LTE frekvensbånd der kan benyttes til private services.

LTE historie og udvikling

Større milepæle i LTE’s udvikling:

  • 2004. NTT DoCoMo, en Japansk mobiloperatør, foreslog at gøre LTE den næste internationale standard for trådløs bredbånd og dermed startede arbejdet på LTE standarden.
  • 2006. På en Livedemonstration, viste Nokia Networks at de kunne downloade en HD video samtidigt med at de uploadede et spil via LTE.
  • 2007. Ericsson, demonstrerede LTE med en hastighed på 144 Mbit/s.
  • 2008. Ericsson demonstrerede det første LTE telefonopkald hvor LTE blev brugt i begge ender.
  • 2009. Telia, gjorde LTE tilgængelig i Oslo og Stokholm.
  • 2011. LTE-Advanced blev færdigbeskrevet i 3GPP Release 10.
  • 2016. 3GPP Ingenører begyndte at udvikle 5G standarden som arvtager for LTE.
  • 2017. Den første 5G NSA specifikation blev udgivet og blev bredt tilgængeligt i 2018-2019.
  • 2021. Arbejdet på 5G specifikationerne er stadig i gang.

Mobile netværk 1G-2G-3G-4G-5G-6G

Historietimen

Det har siden 1951 været muligt at montere en telefon i bilen. Dengang blev samtalerne manuelt ekspederet fra Rigstelefonen, det var dog nødvendigt at vide hvor i landet ens bil og modpartens bil befandt sig. Derudover var der den ulempe at samtaler kunne aflyttes af andre med biltelefon.

primaryImage
Radiotelefon PTM888X

Der blev derfor indgået et samarbejde, i slutning af 70’erne, på tværs af de nordiske lande; Danmark, Sverige, Norge og Finland om at udvikle et automatisk mobiltelefonsystem. Det blev kaldt Nordisk Mobil Telefonsystem eller NMT. Det blev idriftsat imellem 1981 og 1982. På det tidspunkt dækkede det de fire lande. Idéen var at brugsfunktionalitet skulle minde så meget som muligt om det almindelig telefonnet.

Centralen, der styrede systemet, hed AXE. Det kunne registrere, hvor mobiltelefonen befandt sig uden at den der ringede op, behøvede at vide hvor den anden person var. NMT-Nettet blev udsendt på 450Mhz frekvensbåndet og i 1986 var det fyldt op og derfor blev 900Mhz frekvensbåndet taget i brug.

NMT-nettet fik flere funktionaliter, som omstilling af opkald til et andet nummer ved ubesvaret og mulighed for at kode, ofte benyttede, numre ind i telefonen. Senere kom Grønland, Island, Holland, Polen, Tyrkiet og Slovenien også til. I 1985 var NMT-Nettet verdens største med 110.000 abonnementer. Generelt set har NMT været med til at bane vejen for GSM netværket vi kender i dag.

GSM – 1. Generation

I København, år1987, blev der underskrevet en kontrakt på en samarbejdsaftale om udvikling og udrulning af Global System for Mobile Communication eller GSM-Standarden. Der var tretten lande der underskrev kontrakten. Det blev efterfølgende besluttet oprettet kvalitetsstandarder og at allokere bestemte frekvensbånd til GSM-nettet. De besluttede at benytte 900Mhz- og 1800Mhz frekvensbåndene til det. I 1991 blev det første opkald på GSM-nettet foretaget og i dag er GSM stadigvæk standarden ,for mobiltelefoni, i langt de fleste lande i verden. Det var også i GSM Standarden at man valgte at bruge SIM-kort (Subscriber Identity Modulecard) til at give adgang for telefonnummeret på mobilen. GSM-Nettet var også et analogt net. Dette var 1. Generation af GSM nettet Altså 1G.

2G -Anden generation

Anden generation af GSM-nettet (2G) var først og fremmest et digitalt netværk. Det digitale netværk kom også til at indeholde en ny standard General Package Radio Service (GPRS) som kunne overføre data trådløst med op til 40kbit/s (kilobit per sekund). Denne udgave blev også kald for 2.5G. Senere, under 2G, blev der videreudviklet en ny udgave af GPRS som blev kaldt EDGE (Enhanced Data Rates for GSM Evolution. EDGE kunne overføre data med op til 384kbit/s. EDGE kaldes også 2.75G

Dernæst indeholdt 2G, SMS (Short Message System). Det blev oprindeligt udviklet til forretningsfolk, som et værktøj til at sende og modtage korte beskeder til og fra forbindelser. Ligesom „Pageren‟, i blandt andet USA, havde revolutioneret forretningsgange. Det skulle vise sig, sidenhen, at det var den yngre generation der tog SMS til sig. Det skete i sådan en grad at de udviklede deres eget sprog på platformen. Til at starte med var teksten begrænset til 128 karakterer og prisen pr. SMS kunne være op til 5 kr. Derfor lavede de forkortelser for alt der kunne forkortes og udviklede ansigtsmimiker repræsenteret som smileys i form af kolon, bindestreg, parenters sammensat så de lignede simple versioner af nutidens emojier.

En sidste stor ting der blev blev udviklet i 2. generation af GSM var bruges af TDMA. TDMA står for Time Division Multiple Access, som er en teknologi der tillader flere brugere at bruge samme del af et frekvensbånd på én gang. Dette gøres ved at dele dele frekvenserne op i subfrekvenser. TDMA er kompleks og kræver en meget præcis synkronisering af tids mellem modtager og afsender. Herunder ses et eksempel på TDMA, hvor et frekvensbånd deles af A, B og C. Hver bruger for tildelt et tidsrum til at sende og modtage data. I eksemplet ses det at bruger B sender efter bruger A og derefter bruger C.

TDMA eksempel.

De første teknologier på internettet var på 2G, Det var alt fra små hjemmesider på Web Application Protocol (WAP) til specielt udviklede applikation der kunne sende og modtage specifikke data over GSM netværket.

3G – Tredje generation

Den tredje generation af GSM teknologien er en opgradering der primært øger båndbredden. Den teoretiske 3.5hastighed er 144kbs/s og senere i 3.5G og 3.75G. 3.5G er en forbedret udgave af 3G som benytter en teknologi kaldet High Speed Download Packet Access (HSDPA). Det er baseret på UMTS og giver større kapacitet og hastighed samtidig med at svartiderne reduceres. Hastighederne kan nå op på 14 Mbit/s. Med 3.75G eller Evolved High Speed Packet Access (HSPA+) kan hastighed op til 168Mbit/s opnås med MIMO antenne teknik. Med 3G teknologien åbnede muligheder for hjemmesider på mobile enheder, videomøder, overførsel af større datamængder. Mobile bredbåndsforbindelser som erstatning for faste bredbåndsforbindelser eller som løsninger, steder hvor der ikke var/er fast bredbånd tilfældigt.

4G Long Term Evolution

4. Generation af GSM også kaldet LTE er blandet andet defineret som en standard der skal kunne levere 100mbit/s (Megabit) til enheder der er i høj bevægelse. Altså køretøjer som biler og tog, samt levere 1Gbit/S (Gigabit) for stationære eller enheder i lav bevægelser som fodgængere. Selvom standarden for teknologien foreskriver disse høje hastigheder, så er det sjældent at man praktisk kan opnå disse. Se eventuelt indlægget om Transporttab. 4G er designet til at håndtere alt hvad 2G og 3G har kunnet, samt medfødt IP-Telefoni, Gaming servicer, mobilt TV i HD, videokonferencer i stor skala med tusindvis af brugere, 3D TV, Sociale Medier, samt understøttelse af IOT-Enheder (Internet of Things).

Voice over LTE

VoLTE er en trådsløs kommunikations standard der fungerer på mobiltelefoner, IOT-enheder og alverdens data-terminaler. Voice over LTE har tre gange så meget voice og data kapacitet som 3G over UTMS. For at kunne lave et Voice og LTE opkald i HD Voice, skal endepunkterne, masterne og centralerne alle understøtte VoLTE. I 2019 understøttede 262 operatører i over 120 lande VoLTE.

5G – Femte generation

Bagved 5G-Teknologien ligger der en masse funktionaliteter som:

  • Network slicing som er en netværksarkitektur der gør det muligt at multiplexe (det at kombinere flere signaler til ét signal på et delt medie), virtualiserede og uafhængige logiske netværk på den samme underlæggende fysiske netværks infrastruktur. 
  • Orthogonal Frequency-Divsioning Multiplexing (OFDM) er en teknologi som fremmedordene indikerer der involverer at parallelle signaler kan blive opdelt og samlet igen på tværs af frekvenser. Den bruges for at undgå problemer med Doppler-effekten (ændringer i signalbølgen) og Multipath-propagation (Det at et signal kan nå en antenne af flere veje og dermede skabe interferens undervejs. Ved brug af OFDM mindsker man begge dele. 
  • MIMO eller Multiple Input Multiple Output, som også bruges i 4G er en teknologi der gør det muligt at bruge flere antenner til at modtage og sende samtidigt og dermed udnytte en større del af frekvensbåndet og dermed den tilgængelig båndbredde og hastighed på én gang.
Teknologier og deres årtier

Kort og godt. 5G:

  • Bliver hurtigere (op til 10Gbit/S)
  • Kan håndtere flere brugere 100x flere end på 4G)
  • Har lavere svartider (med mulighed for svartid på under 1 sekund)
  • er mere stabilt
  • er designet til at samle netværk
  • Forventes at blive benyttet af 1.7 milliarder enheder.

6G – Next Gen

Den 6. Generation af GSM-nettet, som bliver efterfølgeren til 5G mobilteknologi kommer til bruge højere frekvenser end 5G nettet, formentligt i Terahertz (Thz) spektrummet. Derved bliver der væsentlig højere netværkskapacitet og meget lavere svartider. Ét af målene, for 6G er at det skal kunne understøtte svartider i mikrosekunder så svartidere bliver 1000 gange bedre eller 1/000 del af dem vi kender i dag fra en svar tid på 1 millisekund. Derudover vil sampling rates (den hastighed eller det antal af lyderbidder man kan „smage‟ på, på én gang) foregå meget hurtigere. Kombinationen af sub-mm lydbølger (lydbølger på under 1mm) og frekvensvalg baseret på elektromagnetisk absorberingshastighed forventes at kunne udvikle trådløse sensorer betydeligt.

Teknoligien 6G forventes at understøtte dataforbindelser på 1 terabyte pr. sekund (Tb/s). Hastigheden vil være ulige noget vi har set før og den vil forøge 5G mulighederne for produkter der benytter sig af 5G væsentligt lige som det vil være muligt at danne eller opfinde helt nye teknlogier der på trådløse forbindelser vil kunne forbinde, detektetere, indsende , modtage og behandle, højopløselige billeder og video, informationer med flere og datatunge lag indlejret. Det forventes særligt at kunstig intelligens (AI), autonom infrastruktur, video- og billedbehandling, samt tilgængelighedsteknologier og placeringsteknologier vil få markante forbedringer på baggrund af 6G.

Det vil være muligt med kuntig intelligens, med de høje hastigheder, at server infrastruktur 6G-Netværket og endepunkterne snakker så godt sammen at de automatisk og autonomt selv finder det oplagte eller bedste sted at beregne data, både hvor lagring, processering og deling skal foregå. Der tales allerede i dag om at tilføje Mobile Edge Computer (MEC – som er det man kalder ovenstående AI-drevne autonome infrastruktur) som en tilføjelse til 5G, men MEC vil blive en del af alle 6G netværk. Dermed vil Edge og Core computing bliver sømløst integreret i kommunikations og server infrastrukturen allerede før 6G-netværket idriftsættes. Hvilket vil betyde at de allerede tages i brug under 5G, men først opnår der potentiale når 6G er tilgængeligt.